Exam 2 Review: Topics from 3.1-3.6 with 3.9

This portion of the course covered the bulk of the formulas for differentiation, together with a few definitions and techniques.

For Chapter 3, the following tables summarize the rules that we've had:

$f(x)$	$f^{\prime}(x)$	Sect	$f(x)$	$f^{\prime}(x)$	Sect
c	0	3.1	$c f$	$c f^{\prime}$	3.1
x^{n}	$n x^{n-1}$	3.1	$f \pm g$	$f^{\prime} \pm g^{\prime}$	3.1
a^{x}	$a^{x} \ln (a)$	3.1	$f \cdot g$	$f^{\prime} g+f g^{\prime}$	3.2
e^{x}	e^{x}	3.1	$\frac{f}{g}$	$\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$	3.2
$\log _{a}(x)$	$\frac{1}{x \ln (a)}$	3.6	$f(g(x))$	$f^{\prime}(g(x)) g^{\prime}(x)$	3.4
$\ln (x)$	$\frac{1}{x}$	3.6	$f(x)^{g(x)}$	Logarithmic Diff	3.6
$\sin (x)$	$\cos (x)$	3.3	Eqn in x, y	Implicit Diff	3.5
$\cos (x)$	$-\sin (x)$	3.3			
$\tan (x)$	$\sec ^{2}(x)$	3.3			
$\sec (x)$	$\sec (x) \tan (x)$	3.3			
$\csc (x)$	$-\csc (x) \cot (x)$	3.3			
$\cot (x)$	$-\csc c^{2}(x)$	3.3			
$\sin ^{-1}(x)$	$\frac{1}{\sqrt{1-x^{2}}}$	3.5			
$\tan ^{-1}(x)$	$\frac{1}{1+x^{2}}$	3.5			

Vocabulary/Techniques:

- Be sure you distinguish between:

$$
a^{x} \text { or } a^{f(x)} \quad x^{a} \text { or }(f(x))^{a} \quad f(x)^{g(x)}
$$

- Know the definition of "differentiable".
- Understand the relationship between "differentiable" and "continuous".
- Implicit Differentiation: A technique where we are given an equation with x, y. We treat y as a function of x, and differentiate without explicitly solving for y first.
Example: $x^{2} y+\sqrt{x y}=6 x \rightarrow 2 x y+x^{2} y^{\prime}+\frac{1}{2}(x y)^{-\frac{1}{2}}\left(y+x y^{\prime}\right)=6$
- Logarithmic Differentiation: A technique where we apply the logarithm to $y=f(x)$ before differentiating. Used for taking the derivative of complicated expressions, and needed for taking the derivative of $f(x)^{g(x)}$.
Example: $y=x^{x} \rightarrow \ln (y)=x \ln (x) \rightarrow \frac{1}{y} y^{\prime}=\ln (x)+1 \rightarrow \ldots$ etc
- Differentiation of Inverses: If we know the derivative of $f(x)$, then we can determine the derivative of $f^{-1}(x)$. This technique was used to find derivatives of the inverse trig functions, for example:
$y=f^{-1}(x) \Rightarrow f(y)=x \Rightarrow f^{\prime}(y) y^{\prime}=1$ From this, we could write:

$$
\frac{d}{d x}\left(f^{-1}(x)\right)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Alternatively, we say that if (a, b) is on the graph of f and $f^{\prime}(a)=m$, then we know that (b, a) is on the graph of f^{-1}, and $\frac{d f^{-1}}{d x}(b)=\frac{1}{m}$.
NOTE: This is NOT the same as the derivative of $(f(x))^{-1}=\frac{1}{f(x)}$, which is

$$
\frac{d}{d x}\left((f(x))^{-1}\right)=-(f(x))^{-2} f^{\prime}(x)=\frac{-f^{\prime}(x)}{(f(x))^{2}}
$$

- We also have an alternative version of the Chain Rule that may be useful in certain cases.
For example, if Volume is a function of Radius, Radius is a function of Pressure, Pressure is a function of time, then we can find the rate of change of Volume in terms of the Radius, or the Pressure, or the time. Respectively, this is:

$$
\frac{d V}{d R}, \quad \frac{d V}{d P}=\frac{d V}{d R} \cdot \frac{d R}{d P}, \quad \frac{d V}{d t}=\frac{d V}{d R} \cdot \frac{d R}{d P} \cdot \frac{d P}{d t}
$$

In fact, we could also find things like $d R / d V, d P / d R$, and so on because of the relationship between the derivative of a function and its inverse: $d x / d y=1 /(d y / d x)$.

- Things that come up in the inverse trig stuff: Be able to simplify expressions like $\tan \left(\cos ^{-1}(x)\right), \sin \left(\tan ^{-1}(x)\right)$, etc. using an appropriate right triangle.
- Remember the logarithm rules:

1. $A=\mathrm{e}^{\ln (A)}$ for any $A>0$.
2. $\log (a b)=\log (a)+\log (b)$
3. $\log (a / b)=\log (a)-\log (b)$
4. $\log \left(a^{b}\right)=b \log (a)$

- Always simplify BEFORE differentiating. Example: To differentiate $y=x \sqrt{x}$, first rewrite as $y=x^{3 / 2}$
- For the related rates (Section 3.9), the workflow through the story problems will typically go as:
- Draw a picture
- Label constants and variables that are needed (careful that you don't include too many).
- Determine the functional relationship
* Geometric formula for a circle, square or triangle.
* Geometric formula for a sphere or cone (these would be provided).
* Similar triangles.

Think of this list as a recommendation, but some problems may rely on things we haven't listed.

