M125, Calculus I Homework Assignments to Exam I

GENERAL NOTE: The appendices provide a very good review of basic pre-calculus and trigonometry. If you need help, start there. There are also texts available in the library (search for "Just in Time Algebra and Trigonometry").

Please be sure you read each section carefully and annotate any questions you have. If you have questions, please come see me! We'll spend some time at the beginning of each class answering questions, but only about 10 minutes or so.

DATE	Homework
Aug 30	No class
Sep 01	Review Set 1 (See handout)
Sep 03	Review Set 2 (See handout) Quiz 1 handed out today (Due Monday)
Sep 06	Quiz 1 Due at the beginning of class today Sect 2.1: 1,3; Sect 2.2: 1,3,5,6,9
Sep 08	Sect 2.3: $1,2,5,8,11,17,27,33,39,41,54,55$
Sep 10	Sect 2.5: 1,3,5,11,15,19,23,27,33,39,41,44,46
Sep 13	Sect 2.5, continued.
Sep 15	Sect 2.6: 3,7,11,15,17,19,32,37,49,52
Sep 17	Sect 2.7: 1,3,5(a,b),11(a,b),15,21
Sep 20	Sect 2.8: 1-11 odd, 12, 16, 17, 23, 27, 29, 37-40, 43, 45 Extra: 56, 57
Sep 22	Review/Catch up
Sep 24	Exam 1

This first portion of the course serves as a short review, followed by the concepts of the limit, computation of the limit, continuity, and infinite limits. Lastly, we introduce the notion of a *derivative* as a number representing a rate of change, and the derivative as a *function*.