Summary of 4.4: L'Hospital's Rule

L'Hospital's Rule is a very popular method for computing limits. In this section, we learn the rule and some algebraic techniques for translating problems into the right form for L'Hospital's rule.

1. Definition: A limit is of an indeterminate form if:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{0}{0} \text{ or } \frac{\infty}{\infty}$$

Remarks on the definition:

- $x \to a$ can be replaced by $x \to \pm \infty$.
- $\frac{\infty}{\infty}$ can be replaced by $\frac{\pm \infty}{\pm \infty}$
- 2. L'Hospital's Rule: Suppose f and g are differentiable and $g(x) \neq 0$ near a (except possibly at x = a). Then if the limit is an indeterminant form, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

provided that this limit exists.

- 3. Conversion Types:
 - If the limit is $0 \cdot \infty$, we can convert it to a limit of the form $\frac{0}{0}$.
 - If the limit is $\infty \infty$, we can convert it to either $\frac{0}{0}$ or $\frac{\infty}{\infty}$.
 - If the limit is 0^0 , ∞^0 or ∞^∞ , by taking logs, we can convert to $0 \cdot \infty$, and continue from there.