Solutions to in-class problems for 7.3

1.
$$\int_0^3 \sqrt{9-x^2} \, dx$$

SUBSTITUTION: $x = 3\sin(\theta)$, and $dx = 3\cos(\theta)d\theta$.

Also, if x = 0, then $\sin(\theta) = 0$, or $\theta = 0$. Similarly, if x = 3, then $\sin(\theta) = 1$, which occurs when $\theta = \pi/2$.

$$\int_0^{\pi/2} 3\cos(\theta) \cdot 3\cos(\theta) \, d\theta = 9 \int \cos^2(\theta) \, d\theta$$

For practice in 7.2, we use the half angle formla: $\cos^2(\theta) = \frac{1}{2}(1+\cos(2\theta))$:

$$9\int_0^{\pi/2} \frac{1}{2} (1 + \cos(2\theta)) d\theta = \left(\frac{9}{2}\theta + \frac{9}{4}\sin(2\theta)\right)\Big|_0^{\pi/2} = \frac{9}{4}\pi$$

We note that because this was a definite integral, we did not need to convert back to x.

$$2. \int \frac{dx}{x^2 \sqrt{x^2 - 9}}$$

Make the substitution:

$$x = 3\sec(\theta)$$
 $dx = 3\sec(\theta)\tan(\theta)d\theta$ $\sqrt{x^2 - 9} = 3\tan(\theta)$

Therefore, we have:

$$\int \frac{3\sec(\theta)\tan(\theta)\,d\theta}{9\sec^2(\theta)\cdot 3\tan(\theta)} = \frac{1}{9}\int \cos(\theta)\,d\theta = \frac{1}{9}\sin(\theta) + C$$

Convert back using the reference triangle:

(opposite is $\sqrt{x^2-9}$, adjacent is 3, hypotenuse is x.)

$$\sin(\theta) = \frac{\sqrt{x^2 - 9}}{x}$$

Therefore,

$$\int \frac{dx}{x^2 \sqrt{x^2 - 9}} = \frac{1}{9} \sin(\theta) + C = \frac{\sqrt{x^2 - 9}}{9x} + C$$

3.
$$\int \sqrt{4x^2 + 20} \, dx$$

Let $2x = \sqrt{20}\tan(\theta)$ so $dx = \frac{\sqrt{20}}{2}\sec^2(\theta)d\theta$, and the integrand becomes:

$$\sqrt{4x^2 + 20} = \sqrt{20(\tan^2(\theta) + 1)} = \sqrt{20}\sec(\theta)$$

and the integral becomes

$$\sqrt{20} \frac{\sqrt{20}}{2} \int \sec^3(\theta) d\theta = 10 \int \sec^3(\theta) d\theta$$

To integrate this, use the table from the handout in class:

$$\int \sec^{n}(u) du = \frac{1}{n-1} \sec^{n-2}(u) \tan(u) + \frac{n-2}{n-1} \int \sec^{n-2}(u) du$$
$$\int \sec^{3}(\theta) d\theta = \frac{1}{2} \sec(\theta) \tan(\theta) + \frac{1}{2} \int \sec(\theta) d\theta = \frac{1}{2} \sec(\theta) \tan(\theta) + \frac{1}{2} \ln|\sec(\theta) + \tan(\theta)|$$

to find that we have:

$$\int \sqrt{4x^2 + 20} \, dx = 10 \int \sec^3(\theta) \, d\theta = 5 \tan(\theta) \sec(\theta) + 5 \ln|\sec(\theta) + \tan(\theta)| + C$$

For the reference triangle, the side opposite θ is x, adjacent is $\sqrt{5}$, hypotenuse is $\sqrt{x^2 + 5}$. Therefore,

$$\tan(\theta) = \frac{opp}{adj} = \frac{x}{\sqrt{5}}$$
 $\sec(\theta) = \frac{hyp}{adj} = \frac{\sqrt{x^2 + 5}}{\sqrt{5}}$

Substituting these back, we have:

$$\int \sqrt{4x^2 + 20} \, dx = 5 \cdot \frac{x}{\sqrt{5}} \cdot \frac{\sqrt{x^2 + 5}}{\sqrt{5}} + 5 \ln \left| \frac{\sqrt{x^2 + 5}}{\sqrt{5}} + \frac{x}{\sqrt{5}} \right| = x\sqrt{x^2 + 5} + 5 \ln \left| \sqrt{x^2 + 5} + x \right| - 5 \ln(\sqrt{5}) + C$$

4.
$$\int \frac{dx}{((x-3)^2+2)^2}$$

The substitutions are:

$$x-3 = \sqrt{2}\tan(\theta)$$
 $dx = \sqrt{2}\sec^2(\theta) d\theta$ $(x-3)^2 + 2 = 2(\tan^2(\theta) + 1)$

To get

$$\int \frac{\sqrt{2}\sec^2(\theta) d\theta}{4\sec^4(\theta)} = \frac{1}{2\sqrt{2}} \int \cos^2(\theta) d\theta = \frac{1}{4\sqrt{2}} \int (1 + \cos(2\theta)) d\theta = \frac{1}{4\sqrt{2}} \left(\theta + \frac{1}{2}\sin(2\theta)\right)$$

Now, $\theta = \tan^{-1}\left(\frac{x-3}{\sqrt{2}}\right)$ and using the fact that $\sin(2\theta) = 2\cos(\theta)\sin(\theta)$, on the triangle we get

$$\sin(\theta) = \frac{x-3}{\sqrt{x^2 - 6x + 11}} \qquad \cos(\theta) = \frac{\sqrt{2}}{\sqrt{x^2 - 6x + 11}}$$

Overall, the solution is:

$$\frac{1}{4\sqrt{2}}\tan^{-1}\left(\frac{x-3}{\sqrt{2}}\right) + \frac{1}{4}\frac{(x-3)}{x^2 - 6x + 11} + C$$

$$5. \int \frac{t^5}{\sqrt{t^2+2}} dt$$

SOLUTION: Think of " $\tan^2(\theta) + 1$ ", and let $t = \sqrt{2}\tan(\theta)$ and $dt = \sqrt{2}\sec^2(\theta) d\theta$. Putting these expressions in, we get:

$$\int \frac{2^{5/2} \tan^5(\theta)}{\sqrt{2 \tan^2(\theta) + 2}} \sqrt{2} \sec^2(\theta) d\theta = \frac{2^3}{\sqrt{2}} \int \tan^5(\theta) \sec(\theta) d\theta$$

To continue, reserve $\sec(\theta) \tan(\theta)$ for a substitution: $u = \sec(\theta)$, and

$$\tan^4(\theta) = (\sec^2(\theta) - 1)^2$$

so that the integral becomes:

$$2^{5/2} \int (u^2 - 1)^2 du = 2^{5/2} \int u^4 - 2u^2 + 1 du = 2^{5/2} \left(\frac{1}{5} u^5 - \frac{2}{3} u^3 + u \right) + C$$

where $u = \sec(\theta)$, and after that, $\tan(\theta) = \frac{t}{\sqrt{2}}$, so that $\sec(\theta) = \frac{\sqrt{t^2+2}}{\sqrt{2}}$. ALTERNATE SOLUTION:

We actually could have set $w = t^2 + 2$ and done everything by substitution.

6.
$$\int_0^1 \sqrt{1+x^2} \, dx$$

Let $x = \tan(\theta)$, so that $dx = \sec^2(\theta) d\theta$ and $1 + x^2 = \sec^2(\theta)$. Note that we also have bounds:

$$\tan(\theta) = 0 \quad \Rightarrow \quad \theta = 0$$

$$\tan(\theta) = 1 \quad \Rightarrow \quad \theta = \frac{\pi}{4}$$

Putting it all together:

$$\int_0^{\pi/4} \sec^3(\theta) \, d\theta$$

(We would use the table or integration by parts with $dv = \sec^2(\theta)$ (See bottom of p. 475)).

$$7. \int \frac{dx}{x^4 \sqrt{x^2 - 2}}$$

SOLUTION: Think of $\sec^2(\theta) - 1 = \tan^2(\theta)$. We will substitute $x = \sqrt{2} \sec(\theta)$ and $dx = \sqrt{2} \sec(\theta) \tan(\theta) d\theta$.

$$\int \frac{\sqrt{2}\sec(\theta)\tan(\theta)\,d\theta}{4\sec^4(\theta)\sqrt{2}\tan(\theta)} = \frac{1}{4}\int \cos^3(\theta)\,d\theta$$

To integrate, rewrite the integrand as $(1 - \sin^2(\theta))\cos(\theta)$