Review Problems, Exam 3

1. Does the given sequence or series converge or diverge? If the series converges, is it absolute or conditional? (Careful- we've mixed the sequences and series together!)

(a)
$$\sum_{n=2}^{\infty} \frac{1}{n - \sqrt{n}}$$

(e)
$$\sum_{n=1}^{\infty} (-6)^{n-1} 5^{1-n}$$

(j)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$$

(b)
$$\left\{\frac{n}{1+\sqrt{n}}\right\}$$

$$\left(\mathbf{f}\right) \ \left\{\frac{n!}{(n+2)!}\right\}$$

(k)
$$\sum_{n=1}^{\infty} \frac{\sin^2(n)}{n\sqrt{n}}$$

(c)
$$\sum_{n=2}^{\infty} (-1)^n \frac{n}{n^2 + 1}$$

$$(h) \sum_{n=1}^{\infty} \frac{3^n + 2^n}{3^n}$$

(l)
$$\sum_{n=1}^{\infty} \frac{(-5)^{2n}}{n^2 9^n}$$

(d)
$$\sum_{n=1}^{\infty} \ln \left(\frac{n}{3n+1} \right)$$

(i)
$$\left\{\sin\left(\frac{n\pi}{2}\right)\right\}$$

$$(f) \left\{ \frac{n!}{(n+2)!} \right\}$$

$$(g) \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{5^n n!}$$

$$(h) \sum_{n=2}^{\infty} \frac{3^n + 2^n}{6^n}$$

$$(l) \left\{ \sin\left(\frac{n\pi}{2}\right) \right\}$$

$$(m) \sum_{n=1}^{\infty} \frac{1}{n\sqrt{\ln(n)}}$$

2. Evaluate the integral or show it diverges:

(a)
$$\int_0^1 \frac{x-1}{\sqrt{x}} \, dx$$

(b)
$$\int_{2}^{\infty} \frac{1}{x \ln(x)} dx$$

(c)
$$\int_0^\infty x^3 e^{-x^4} dx$$

- 3. Show that the integral $\int_{1}^{\infty} \frac{\sin^{2}(x)}{r^{2}} dx$ converges or diverges. HINT: Do not try to directly compute the antiderivative. Be clear as to your justification.
- 4. Find the sum of the series (Geometric series)

(a)
$$\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{2^{2n}}$$

(b)
$$\sum_{n=2}^{\infty} \frac{(x-3)^{2n}}{3^n}$$

5. Find the radius of convergence. For the last two, include the interval of convergence.

(a)
$$\sum \frac{n!x^n}{1 \cdot 3 \cdot 5 \cdots (2n-1)}$$
 (b) $\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n^2 5^n}$ (c) $\sum_{n=0}^{\infty} \frac{2^n (x-3)^n}{\sqrt{n+3}}$

(b)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n^2 5^n}$$

(c)
$$\sum_{n=0}^{\infty} \frac{2^n(x-3)^n}{\sqrt{n+3}}$$

6. Use a known template series to find a series for the following:

(a)
$$\frac{1}{1+x}$$

(b)
$$\frac{x}{3-x^2}$$

- 7. True or False, and give a short reason:
 - (a) If $\lim_{n\to\infty} a_n = 0$, then the series $\sum a_n$ is convergent.
 - (b) If $\sum a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.
 - (c) The Ratio Test can be used to determine if a p-series is convergent.

1

- (d) If $0 \le a_n \le b_n$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.
- (e) If $a_n > 0$ for all n and $\sum a_n$ converges, then $\sum (-1)^n a_n$ converges.
- 8. Suppose that $\sum_{n=0}^{\infty} c_n(x-1)^n$ converges when x=3 and diverges when x=-2.
 - (a) What is the largest interval for x on which we can guarantee that the series converges.
 - (b) What can be said about the sum: $\sum_{n=0}^{\infty} (-1)^n c_n$
 - (c) What can be said about the sum: $\sum_{n=0}^{\infty} c_n 4^n$
- 9. Since we know that $\int \frac{1}{1+x} dx = \ln(1+x)$, find a power series for $\ln(1+x)$ using a geometric series (then integrate it). Also find the radius of convergence.
- 10. Let $a_n = \frac{2n}{3n+1}$
 - (a) Determine whether $\{a_n\}$ is convergent.
 - (b) Determine whether $\sum_{n=1}^{\infty} a_n$ is convergent.
- 11. Consider the series $\sum_{n=1}^{\infty} \frac{1}{n^4}$. Show that the series converges absolutely by using the Integral Test (if appropriate- Check it)
- 12. Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$
 - (a) Prove the series converges by using the Alternating Series Test. Be clear about what you have to check for this.
 - (b) If we use 99 terms of the series, what is an estimate of the remainder (of the sum)?
- 13. The terms of a series are defined recursively by the equations:

$$a_1 = 2 a_{n+1} = \frac{5n+1}{4n+3}a_n$$

so, for example,

$$a_2 = \frac{6}{7}a_1 = \frac{12}{7}, \qquad a_3 = \frac{11}{11} \cdot a_2 = 1 \cdot \frac{12}{7} = \frac{12}{7}, \dots$$

Does the series converge or diverge? (Hint: You have enough information to run a convergence test).

2