Exam 3 Notes

The third exam will cover sections 3.8, and 5.1-5.6, and 6.1-6.2. To help you remember the convergence/divergence tests, the "hint sheet" will be available to you during the exam.

Here are the main points from this material:

- 1. (3.8) Know how to compute an improper integral (including taking the limit).
- 2. Know these definitions: A sequence, series, power series. Absolute and conditional convergence, radius of convergence, interval of convergence.
- 3. Be able to determine if a **sequence** converges or diverges. This means that we can find the limit. The main techniques we reviewed were:
 - (a) L'Hospital's Rule (and the algebra needed to get into a form suitable for l'Hospital)
 - (b) Divide by a power of n

NOTE: You can use your intuition so that you know what you're trying to get, but for full credit, you must back up your answer with a valid technique, as one of the two listed above.

- 4. Be able to explain what an infinite series is (Hint: Think about partial sums converging).
- 5. Template series (**be sure you know these**): The geometric series (and the sum of the geometric series), the p-series, and in particular the harmonic series and the alternating harmonic series.
- 6. Be able to determine if a series converges or diverges:
 - (a) Test for Divergence.
 - (b) The integral test (for certain functions).
 - (c) (For positive series or abs conv) The (direct or limit) comparison test.
 - (d) (For abs convergence) The Ratio Test
- (e) (For abs convergence) The Root test (not a common test)
- (f) The Alternating Series Test and the remainder estimate for an alternating series, R_n :

$$|R_n| \leq b_{n+1}$$

NOTE: You can use your intuition so that you know what you're trying to get, but for full credit, you must back up your answer with a valid test.

- 7. Find the radius and interval of convergence for a given power series. Understand the three possible outcomes for the radius (one point, an interval about x = a, all real numbers).
- 8. Construct a power series for a given function using a geometric series as a template. Be able to differentiate and integrate a power series.