
Extra: #209 from Section 5.4

We want to consider the series ∞∑
n=1

ln(1 + 1/n)

n

Graphically, we see that x > ln(x). Intuitively, ln(x) grows to infinity, but very slowly
(slower than any root function).
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Graphs of y = x and y = ln(x)

With that observation, ln(x) < x, or
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)
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so that we can use a direct comparison if we multiply both sides by 1/n:
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Since
∑ 1

n2 is a convergent p−series, then our series also converges (by the Direct Comparison
Test).

We could use the Limit Comparison test with comparing against 1/n2, but it’s a bit
tricky.
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Setting this up to use l’Hospital’s rule:
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Now we can apply l’Hospital’s rule to this, noting that 1 + 1
n
= n+1

n
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And therefore, the original series converges by the Limit Comparison Test with
∑ 1

n2
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