Extra: #209 from Section 5.4

We want to consider the series
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Graphically, we see that x > In(x). Intuitively, In(z) grows to infinity, but very slowly
(slower than any root function).

Graphs of y = z and y = In(x)
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With that observation, In(x) < z, or
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so that we can use a direct comparison if we multiply both sides by 1/n:
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Since # is a convergent p—series, then our series also converges (by the Direct Comparison
Test).

We could use the Limit Comparison test with comparing against 1/n?, but it’s a bit
tricky.
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Setting this up to use I’'Hospital’s rule:
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Now we can apply I’'Hospital’s rule to this, noting that 1 + % =
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And therefore, the original series converges by the Limit Comparison Test with Y %



