Solutions: Practice with Riemann Sums

- 1. Write the Riemann sum (left/right as specified) to estimate the area under f(x) on the given interval (This is a definite integral, but we want the Riemann sum).
 - (a) $f(x) = x^2$ on [0, 2] using right endpoints. Here $\Delta x = \frac{2-0}{n} = \frac{2}{n}$ and the right endpoints are $x_i = 0 + i\frac{2}{n} = \frac{2i}{n}$. Thus

$$R_n = \sum_{i=1}^n \left(\frac{2i}{n}\right)^2 \cdot \frac{2}{n}$$

(b) $f(x) = \sqrt{x}$ on [1, 5] using left endpoints.

Here $\Delta x = \frac{5-1}{n} = \frac{4}{n}$ and the left endpoints are $x_{i-1} = 1 + (i-1)\frac{4}{n}$. Thus

$$L_n = \sum_{i=1}^n \sqrt{1 + \frac{4}{n}(i-1)} \frac{4}{n}.$$

(c) $f(x) = e^x$ on [0, 3] using right endpoints.

Here
$$\Delta x = \frac{3}{n}$$
 and $x_i = \frac{3i}{n}$, so

$$R_n = \sum_{i=1}^{n} e^{3i/n} \, \frac{3}{n}.$$

- 2. Convert each Riemann sum into a definite integral.
 - (a) $\lim_{n \to \infty} \frac{3}{n} \sum_{i=1}^{n} \left[\left(2 + \frac{3i}{n} \right)^2 + 2 \left(2 + \frac{3i}{n} \right) \right].$

Note that $\Delta x = \frac{3}{n}$ and the i^{th} right endpoints are $2 + \frac{3i}{n}$. The integrand is $f(x) = x^2 + 2x$. Thus one natural expression is

$$\int_{2}^{5} (x^2 + 2x) \, dx.$$

We could have made a=2 instead of zero. In that case, the right endpoints are $\frac{3i}{n}$, and the function changes to

$$\int_0^3 \left((2+3x)^2 + 2(2+3x) \right) dx.$$

(b)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{4}{n} \ln \left(1 + \frac{4i}{n} \right).$$

Here $\Delta x = \frac{4}{n}$ and if we let right endpoints be $1 + \frac{4i}{n}$, then

$$\int_{1}^{4} \ln(x) \ dx.$$

(c)
$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{2}{n} \left(3 + \frac{2(i-1)}{n} \right)^{3}$$
.

Here $\Delta x = \frac{2}{n}$ and left endpoints $3 + \frac{2(i-1)}{n}$. With $f(x) = x^3$ we obtain

$$\int_3^5 x^3 dx.$$