Solutions: Practice with Riemann Sums

1. Write the Riemann sum (left/right as specified) to estimate the area under f(x) on
the given interval (This is a definite integral, but we want the Riemann sum).

(a) f(x) =x* on [0, 2] using right endpoints.
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Here Az = = — and the right endpoints are x; = 0 + z% = % Thus
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(b) f(x) = +/z on [1,5] using left endpoints.
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Here Az = = — and the left endpoints are x; 1 =1+ (¢ — 1)—. Thus
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(c¢) f(x)=e" on [0,3] using right endpoints.
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Here Ax = 3 and z; = —Z, SO
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2. Convert each Riemann sum into a definite integral.
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Note that Az = — and the i*" right endpoints are 2 + 2 The integrand is
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f(x) = 2% + 2x. Thus one natural expression is
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We could have made a = 2 instead of zero. In that case, the right endpoints are
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—, and the function changes to
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Here Az = — and if we let right endpoints be 1 + —Z, then
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Here Az = — and left endpoints 3 +
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. With f(z) = 23 we obtain



