Homework Hints: Section 7.5

- 1. u, du substitution.
- 2. u, du substitution.
- 3. Break up the integrand as cos(x) + csc(x)
- 4. $u = \cos(x)$
- 5. $u = t^2$
- 6. u = 2x + 1
- 7. $u = \tan^{-1}(y)$
- 8. Before doing integrating by parts, you might use $\sin(2t) = 2\sin(t)\cos(t)$.
- 9. Integration by parts.
- 10. Partial fractions- Denominator factors as (x-5)(x+1)
- 11. Rewrite integrand: $\frac{(x-2)+1}{(x-2)^2+1}$
- 12. First, let $u=x^2$. The problem then has denominator u^2+u+1 , so complete the square. You may want to do a second substitution.
- 13. Let $u = \cos(t)$
- 14. Let $u = 1 + x^2$.
- 15. Let $x = \sin(\theta)$
- 16. Let $x = \sin(\theta)$
- 17. Before doing integration by parts, you might use the half angle formula on $\cos^2(t)$.
- 18. Let $u = \sqrt{t}$.
- 19. Let $u = e^x$, and note that $e^{x+e^x} = e^x e^{e^x}$
- 20. e^2 is a constant!
- 21. Substitute first, $t = \sqrt{x}$. Then integration by parts.
- 22. $u = 1 + (ln(x))^2$
- 23. $u = 1 + \sqrt{x}$

- 24. Long division first (kind of partial fractions)
- 25. Long division first
- 26. Let $u = x^3 2x 8$
- 27. Let $u = 1 + e^x$, then do partial fractions on the resulting expression.
- 28. Let $u = \sqrt{at}$ (so $u^2 = at$). Integration by parts after that.
- 29. Integration by parts with middle: $\ln(x + \sqrt{x^2 1})$
- 30. Rewrite $|e^x 1|$ using a piecewise defined function.
- 31. Tricky: Multiply numerator and denominator by $\sqrt{1+x}$.
- 32. Tricky: Let $u = \sqrt{2x-1}$, so that $2x+3 = u^2+4$ and u du = dx
- 33. Complete the square, then let $(x+1) = 2\sin(\theta)$
- 34. Tricky: Multiply numerator and denominator by $\sin(x)$ (rewrite $\cot(x)$ in terms of sines and cosines). Let $u = 4\sin(x) \cos(x)$ (not obvious).
- 35. Uses a sum formula from the table of formulas- The formula for $\cos(au)\cos(bu)$.
- 36. An odd function.
- 37. Let $u = \tan(\theta)$.
- 38. Simplify the integrand using sine and cosine.
- 39. Let $u = \sec(\theta)$, then partial fractions.
- 40. Complete the square, then factor the two out of the denominator.
- 41. Integration by parts with $u = \theta$ and $dv = \tan^2(\theta)$.