Exercises in Proof by Induction
Here’s a summary of what we mean by a “proof by induction”:

The Induction Principle: Let P(n) be a statement which depends on n =
1,2,3,---. Then P(n) is true for all n if:

e P(1) is true (the base case).

e Prove that P(k) is true implies that P(k + 1) is true. This is sometimes
broken into two steps, but they go together: Assume that P(k) is true, then
show that with this assumption, P(k + 1) must be true.

Exercises

1. Prove each using induction:
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2. This exercise refers to the Fibonacci sequence:
1,1,2,3,5,8,13,21, 34, - --

The sequence is defined recursively by f; =1, fo = 1, then f,.1 = f, + f,-1 for each
n > 2. As before, prove each of the following using induction. You might investigate
each with several examples before you start.
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