Solutions to Quiz 10
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SOLUTION: The series does not converge absolutely (it would behave like - 1/n), so
we check for conditional convergence by using the alternating series test.

o Let b, =

e The function is decreasing:

so forn > 1, b, > 0.
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The parabola in the numerator opens downward, so it is decreasing past its vertex,
at © = —b/2a, or v = —2/2(—1) = 1. Therefore, for x > 1, the expression is
decreasing.
e The limit is zero:
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(Yes, sometimes we get sloppy and leave it as an expression in n, but to differ-
entiate, it really ought to be in terms of a real number x, versus the integers

By the Alternating Series Test, the series converges (conditionally).

2. Z(—l)"—‘. Probably easiest to use the Ratio Test. NOTE: Recall that we’re taking
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the absolute value of the terms, so the (—1)" goes away:
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Since the limit is less than 1, the series converges absolutely.

> !
3. ngl TS n(gn Y Use the Ratio Test again:

i (n+1)! 2-5-8---(3n+2) . o n+1 1
lim = lim =-<1
n—=02.5-8---(3n+2)(3n+5) n! nsoe 3n+5 3

Therefore, the series converges absolutely (by the Ratio Test).
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Consider f(z) = 22e~*". The function f is continuous, positive and the derivative is:
F(z) = —ze " (32° — 2)

so, for x > 2, f is decreasing. Now we can use the Integral Test for convergence. You
might notice that setting u = % will give us a nice substitution:
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Since lim,_,,, ™ = 0, the integral will converge.

Therefore, by the Integral Test, the original series will also converge.
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This series will converge like 1/n?, so we can try the limit comparison:
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Since the limit is in the interval (0, c0), the two series will converge or diverge together.
Since 3 1/n? is convergent, they will both converge (absolutely, since the terms are all
positive).
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5.—- This one is kind of set up for the Root Test:
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The limit is less than 1, so the series converges (absolutely).
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We see that > 1/y/n would diverge (and we should say so), so then we go to the
Alternating Series Test.

e b, = ﬁ, which is positive for n > 2.

e 0, is decreasing, since the denominator is increasing.

e lim, ,..b,=0

By the Alternating Series Test, the series converges. Since it was not absolutely con-
vergent, this means it is only conditionally convergent.



