
Final Exam Review
Calculus II
Sheet 2

1. True or False, and give a short reason:

(a) The Ratio Test will not give a conclusive result for
∑ 2n+3

3n4+2n3+3n+5

TRUE. The ratio test fails for p−like series (the limit will be 1). To show conver-
gence, use a direct or limit comparison (Limit comparison with 1/n3)

(b) If
∞∑
n=k

an converges for some large k, then so will
∞∑
n=1

an.

TRUE. The first few terms of a sum are irrelevant when looking at whether or not
the sum converges (although they will effect what the sum converges to).

(c) If f is continuous on [0,∞) and lim
x→∞

f(x) = 0, then
∫∞
0 f(x) dx converges.

FALSE. For example, 1/(x − 1). (The idea here is that functions must go to zero
fast enough).

(d) If f is continuous and
∫ 9

0
f(x) dx = 4, then

∫ 3

0
xf(x2) dx = 4.

FALSE.

∫ 3

0
xf(x2) dx⇒

u = x2

(1/2) du = dx
x = 0 ⇒ u = 0
x = 3 ⇒ u = 9

⇒ 1

2

∫ 9

0
f(u) du =

1

2
· 4 = 2

2. Short Answer:

(a) Suppose the series
∑
cn3n converges. Will

∑
cn(−2)n also converge? For what

values of x will the series
∑
cn(x− 2)n converge?

SOLUTION: For the first part of the question, we can look as if it were a power
series

∑
cnx

n that converged at x = 3. Therefore, the series would converge for all
|x| < 3, and x = −2 is within that range. On the other hand, if we think of the
series as

∑
cn(x− 2)n, then the series converges for all x so that |x− 2| < 3, or at

least within the interval (−1, 5] (the convergence at x−2 = 3 might be conditional,
that’s why we did not include x = −1).

(b) If
∑
an,

∑
bn are series with positive terms, and an, bn both go to zero as n→∞,

then what can we conclude if lim
n→∞

an
bn

= 0?

SOLUTION: We can conclude that the terms of
∑
an are going to zero faster than

bn. Thus, if
∑
bn is convergent, so is

∑
an, and if

∑
an is divergent, so is

∑
bn.

(c) What is the derivative of sin−1(x)? Of tan−1(x)? What is the antiderivative of
each?

SOLUTION: The derivative of sin−1(x) is 1√
1−x2 . The derivative of tan−1(x) is 1

1+x2

To integrate either, use integration by parts. For sin−1(x),

+ sin−1(x) 1

− 1/
√

1− x2 x
⇒
∫

sin−1(x) dx = x sin−1(x)−
∫ x√

1− x2
dx
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For this integral, use u = 1− x2, du = −2x dx to get a final answer:∫
sin−1(x) dx = x sin−1(x) +

√
1− x2 + C

(d) Find the sum:
∑∞

n=1 e−2n

SOLUTION: The sum of a geometric series, in its general form is:

∞∑
n=k

arn =
ark

1− r

In this case, r = e−2, so the sum is: e−2

1+e−2

3. Suppose h(1) = −2, h′(1) = 2, h′′(1) = 3, h(2) = 6, h′(2) = 5, and h′′(2) = 13, and h′′

is continuous. Evaluate
∫ 2
1 h
′′(u) du.∫ 2

1
h′′(u) du = h′(2)− h′(1) = 5− 2 = 3

4. Determine a definite integral representing: lim
n→∞

n∑
i=1

3

n

√
1 +

3i

n
[For extra practice, try

writing the integral so that the right endpoint (or bottom bound) must be 5].

SOLUTION: We need to find f so that

f
(

5 +
3i

n

)
=

√
1 +

3i

n

Here is one: f(x) =
√
x− 4. Our solution is:∫ 8

5

√
x− 4 dx

5. Evaluate
∫ 5

2
(1 + 2x) dx by using the definition of the integral (use right endpoints).

SOLUTION: The ith right endpoint is 2 + 3i
n

. Evaluating f at this endpoint gives the
following, from which we get the Riemann sum:(

1 + 2
(

2 +
3i

n

))
= 1 + 4 +

6i

n
= 5 +

6i

n
⇒

n∑
i=1

(
5 +

6i

n

)
3

n

Now break apart the sum to evaluate:

lim
n→∞

3

n

(
5

n∑
i=1

1 +
6

n

n∑
i=1

i

)
= lim

n→∞

3

n

(
5n+

6

n

n(n+ 1)

2

)
= lim

n→∞
15 + 9 · n+ 1

n
= 24

(Note that geometrically, the area of the trapezoid is also 24).

6. For each function, find the Taylor series for f(x) centered at the given value of a:

SOLUTION:
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(a) f(x) = 1 + x+ x2 at a = 2 We need f(2), f ′(2), f ′′(2): f(2) = 7. f ′(x) = 1 + 2x, so
f ′(2) = 5. f ′′(x) = 2 Now,

1 + x+ x2 = 7 + 5(x− 2) +
2

2!
(x− 2)2 = 7 + 5(x− 2) + (x− 2)2

(b) f(x) = 1
x

at a = 1. We need to compute derivatives:

n fn(x) fn(1)
0 x−1 1
1 −x−2 −1
2 2x−3 2
3 −(3 · 2)x−4 −(3 · 2)
4 4 · 3 · 2x−5 4 · 3 · 2
...

...
...

n (−1)nn!x−(n+1) (−1)nn!

⇒ f (n)(1)

n!
= (−1)n ⇒

∞∑
n=0

(−1)n(x− 1)n

Alternatively, we could use the geometric series:

1

x
=

1

1− (1− x)
=
∞∑
n=0

(1− x)n =
∞∑
n=0

(−1)n(x− 1)n

7. Find a so that half the area under the curve y = 1
x2 lies in the interval [1, a] and half of

the area lies in the interval [a, 4].

SOLUTION: We could set this up multiple ways- here is one way to do it:∫ a

1

1

x2
dx =

1

2

∫ 4

1

1

x2
dx⇒ −1

a
+ 1 =

3

8
⇒ a =

8

5

8. Compute the limit, by using the series for sin(x): lim
x→0

sin(x)

x
SOLUTION: The series for the sine function is:

sin(x) =
∞∑
n=0

(−1)n
x(2n+1)

(2n+ 1)!
= x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + · · ·

Therefore, the series for sin(x)/x is:

sin(x)

x
= 1− 1

3!
x2 +

1

5!
x4 + · · ·

To find the limit as x → 0, we can evaluate the series at x = 0, which leaves the limit
as 1.

9. Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating
the region bounded by y = x, y = 4x− x2, about x = 7.

SOLUTION: First, find the region of interest. y = 4x− x2 is an upside down parabola
with x−intercepts at x = 0, x = 4. The point of intersection is x = 4x−x2 ⇒ 0 = 3x−x2,
or x = 0 and x = 3. Now the region of interest is between x = 0, x = 3, above the
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line y = x and below the parabola y = 4x − x2. Rotate about x = 7, and we will use
cylindrical shells (Washers would be possible, but messy!). The height of the cylinder is
(4x− x2)− x = 3x− x2. The radius is 7− x. Therefore, the integral for the volume is:∫ 3

0
2π(7− x)(3x− x2) dx

10. Evaluate each of the following:

[The purpose of this problem is to get you to see the differences in notation]

(a)
d

dx

∫ sin(x)

3x
t3 dt. By FTC, part I: sin3(x) · cos(x)− (3x)3 · 3

(b)
d

dx

∫ 5

1
x3 dx = 0 (this is the derivative of a constant)

(c)
∫ 5

1

d

dx
x3 dx = x3

∣∣∣5
1

= 53 − 1 = 124. This is FTC, part II.

11. Converge (absolute or conditional) or Diverge?

(a)
∞∑
n=1

(−1)nn

(n+ 1)(n+ 2)
This will behave like

∑
(−1)n 1

n
, which only converges condition-

ally.

We can use the limit comparison test (with 1
n
) to show that the series does not

converge absolutely:

lim
n→∞

n

(n+ 1)(n+ 2)
· n

1
= 1

The two series will diverge together, so the given series diverges.

Now we use the Alternating Series Test to show that it converges conditionally:
Each term is clearly positive, for n > 0. Is it decreasing?

f(x) =
x

(x+ 1)(x+ 2)
f ′(x) =

2− x2

(x+ 1)2(x+ 2)2

so the derivative is negative for x >
√

2 (or the terms of the series are decreasing
for n > 2). Finally, show that the terms are going to zero:

lim
n→

n

(n+ 1)(n+ 2)
= lim

n→∞

n

n2 + 3n+ 2
= lim

n→∞

1

2n+ 3
= 0

(the last equality by l’Hospital’s rule).

(b)
∞∑
n=1

√
n2 − 1

n3 + 2n2 + 5

It looks like it should converge by comparing it to
∑ 1

n2 , so we’ll try the limit
comparison test:

lim
n→∞

√
n2 − 1

n3 + 2n2 + 5
· n

2

1
= lim

n→∞

√
n2 − 1

n3 + 2n2 + 5
·
√
n4

1
= lim

n→∞

√
n6 − n4

n3 + 2n2 + 5
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(Don’t use l’Hospital’s rule!) Divide top and bottom by n3:

lim
n→∞

√
1− 1

n2

1 + 2
n

+ 5
n3

= 1

By the limit comparison test, the given series converges (absolutely, but that is
irrelevant since the terms are all positive anyway).

(c)
∞∑
k=1

4k + k

k!
Use the ratio test:

4k+1 + (k + 1)

(k + 1)!
· k!

4k + k
=

4k+1 + k + 1

(k + 1)(4k + k)
=

4 + k
4k

+ 1
4k

(k + 1)(1 + k
4k

)

The numerator approaches 4 as k →∞ and the denominator goes to∞ as k →∞,
so overall, the limit is 0. Therefore, this series converges (absolutely) by the Ratio
Test.

12. Find the interval of convergence.

(a)
∞∑
n=1

nnxn By the root test, lim
n→∞

(nnxn)1/n = lim
n→∞

nx =∞ Therefore, the only point

of convergence is when x = 0. (The radius of convergence is also 0).

Note: The root test is not used very often, but in this situation (where everything
is raised to the nth power), this will make quick work of the problem.

(b)
∞∑
n=1

(x+ 2)n

n4n

Use the Ratio Test, as usual:

lim
n→∞

|x+ 2|n+1

(n+ 1)4n+1
· n4n

|x|n
= lim

n→∞

n+ 1

n

|x+ 2|
4

=
|x+ 2|

4
< 1 This means that the

radius of convergence is 4, and the interval so far is (−6, 2).

Check the endpoints: If x = 2, then the sum is
∑ 1

n
which diverges. If x = −6,

then the sum is
∑ (−1)n

n
, which converges. The interval of convergence is therefor

−6 ≤ x < 2.

(c)
∞∑
n=1

2n(x− 3)n√
n+ 3

Use the Ratio Test:

lim
n→∞

2n+1|x− 3|n+1

√
n+ 4

·
√
n+ 3

2n|x− 3|n
= lim

n→∞

√
n+ 3

n+ 4
· 2|x− 3| = 2|x− 3| < 1

Therefore, the radius of convergence is 1/2 and the interval is 5/2 < x < 7/2. Now
check endpoints:

If x = 5
2
, the sum becomes

∑ (−1)n√
n+3

, which converges by the Alternating Series test,

and if x = 7
2
, the sum becomes

∑ 1√
n+3

which diverges (p-series).

13. Evaluate:
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(a)
∫ ∞
0

1

(x+ 2)(x+ 3)
dx By partial fractions,

∫ 1

(x+ 2)(x+ 3)
dx =

∫ 1

x+ 2
− 1

x+ 3
dx = ln |x+ 2| − ln |x+ 3| = ln

∣∣∣∣x+ 2

x+ 3

∣∣∣∣
As x→∞, ln

∣∣∣∣x+ 2

x+ 3

∣∣∣∣→ ln(1) = 0. Altogether we get:

∫ ∞
0

1

(x+ 2)(x+ 3)
dx = 0− ln(2/3) = ln(3/2)

(b)
∫
u(
√
u + 3
√
u) du Simplify algebraically first, to get

∫
u3/2 + u4/3 du = 2

5
u5/2 +

3
7
u7/3 + C

(c)
∫ x2

(4− x2)3/2
dx

Use a triangle whose hypotenuse is 2, side opposite θ is x, and side adjacent is√
4− x2. Then, substitute 2 sin(θ) = x, 2 cos(θ) =

√
4− x2, and we get:

∫ 4 sin2(θ) · 2 cos(θ)

23 cos3(θ)
dθ =

∫
tan2(θ) dθ =

∫
sec2(θ)− 1 dθ = tan(θ)− θ

Convert back using triangles to get:
x√

4− x2
− sin−1(x/2) + C

(d)
∫ tan−1(x)

1 + x2
dx Let u = tan−1(x), so du = 1

1+x2 dx. Then the integral becomes

∫
u du =

1

2
u2 + C =

1

2
(tan−1(x))2 + C

(e)
∫ 1√

x2 − 4x
dx

”Complete the Square” in the denominator to get x2 − 4x = (x − 2)2 − 4. Now,
use a triangle whose hypotenuse is x − 2, side adjacent is 2, and side opposite is√

(x− 2)2 − 22. Then,

2 tan(θ) =
√

(x− 2)2 − 22, 2 sec(θ) = x− 2, 2 sec(θ) tan(θ)dθ = dx

Substituting, we get:∫ 1√
x2 − 4x

dx =
∫ 2 sec(θ) tan(θ)

2 tan(θ)
dθ =

∫
sec(θ) dθ = ln | sec(θ) + tan(θ)|+ C

[NOTE: You’ll be given the formulas as on the previous exam]. Final answer:

ln

∣∣∣∣∣∣x− 2

2
+

√
(x− 2)2 − 4

2

∣∣∣∣∣∣+ C
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(f)
∫
x4 ln(x) dx Use integration by parts

+ ln(x) x4

− 1/x (1/5)x5
⇒ 1

5
x5 ln(x)− 1

5

∫
x4 dx =

1

5
x5 ln(x)− 1

25
x5 + C

(g)
∫

e−x sin(2x) dx. This is the type of integral for which we perform integration by

parts twice to get the same integral on both sides of the equation:

+ sin(2x) e−x

− 2 cos(2x) −e−x

+ −4 sin(2x) e−x
⇒
∫

e−x sin(2x) dx = −e−x sin(2x)−2e−x cos(2x)−4
∫

e−x sin(2x) dx

so that ∫
e−x sin(2x) dx = −1

5
e−x sin(2x)− 2

5
e−x cos(2x)

(h)
∫ 3

0

1√
x
dx

Note that we have a vertical asymptote at x = 0, so∫ 3

0

1√
x
dx = lim

T→0+

∫ 3

T
x−1/2 dx = lim

T→0+
2x1/2

∣∣∣3
T

= 2
√

3− 0 = 2
√

3

(i)
∫

sin2 x cos5 x dx Recall our rules for dealing with powers of sine and cosine: If

both are even, use the formulas for sin2(x) and cos2(x). If one (or both) are odd,
try substitution: ∫

sin2(x) cos4(x) · cos(x) dx

which means we want to write u = sin(x). Use the Pythagorean Identity: cos4(x) =
(1− sin2(x))2, so that:∫

sin2(x) cos4(x)·cos(x) dx =
∫

sin2(x)
(
1− sin2(x)

)2
·cos(x) dx =

∫
u2(1−u2)2 du

Simplify this last integral, and integrate:∫
u6 − 2u4 + u2 du =

1

7
u7 − 2

5
u5 +

1

3
u3 + C

so our final answer is:

1

7
sin7(x)− 2

5
sin5(x) +

1

3
sin3(x) + C

14. A leaky 10-kg bucket is lifted from the ground to a height of 12 meters at a constant
speed with a rope has density 0.8 kg/m. Initially the bucket contains 36 kg of water,
but the water leaks at a constant rate and finishes draining just as the bucket reaches
the 12 meter level. Set up the integral to compute how much work is done (gravity is
9.8 m/s2):

SOLUTION: At a height of x meters:
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• The mass of the rope is 0.8(12− x) kg.

• The mass of the water is (36/12)(12− x) = (36− 3x) kg.

• The mass of the bucket is constant at 10 kg.

The work needed to lift the rope a small unit, dx, is the mass times g, or:

9.8
∫ 12

0
0.8(12− x) + (36− 3x) + 10 dx

Integrate this out to get approximately 3857 J.

15. Prove the following by induction:

1 · 2 + 2 · 3 + 3 · 4 + · · ·+ n · (n+ 1) =
n(n+ 1)(n+ 2)

3

SOLUTION:

• Prove it for a first case: If n = 1, the

1 · 2 =
1 · 2 · 3

3

Which is true.

• Assume the statement is true for n = k, then use that to prove it true for n = k+1:

Assume true for n = k:

1 · 2 + 2 · 3 + 3 · 4 + · · ·+ k · (k + 1) =
k(k + 1)(k + 2)

3

And, we want to show that this implies that:

1 · 2 + 2 · 3 + · · ·+ k · (k + 1) + (k + 1)(k + 2) =
(k + 1)(k + 2)(k + 3)

3

So, starting with the left side of the equation, we want to get the right side. As is
our usual practice, break up the sum to use the assumption:

1 · 2 + 2 · 3 + · · ·+ k · (k + 1) + (k + 1)(k + 2) =

[1 · 2 + 2 · 3 + · · ·+ k · (k + 1)] + (k + 1)(k + 2) =
k(k + 1)(k + 2)

3
+ (k + 1)(k + 2)

Factor out (k + 1)(k + 2)

= (k + 1)(k + 2)

(
k

3
+ 1

)
=

(k + 1)(k + 2)(k + 3)

3

Therefore, the statement is true for all positive integers n.
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