
Final Exam Review
Calculus II
Sheet 3

1. Determine if the series converges (absolute or conditional) or diverges:

(a)
∞∑
n=1

(−1)n ln(n)

n

SOLUTION: We might first check to see if it converges absolutely. It will not, by
the integral test. To check that the function is decreasing, take the derivative:

1
x
· x− 1 · ln(x)

x2
=

1− ln(x)

x2

The denominator is always positive for x > 1, and the numerator is negative for
x > e (which is fine). Now for the integral, perform u, du substitution, and

∫ ∞
1

ln(x)

x
dx = lim

t→∞

(
1

2
(ln(x))2

∣∣∣∣t
1
→∞

The integral diverges.

However, the series is alternating. We’ve already shown the individual terms
ln(n)/n is decreasing, so now we just need to show they go to zero:

lim
x→∞

ln(x)

x
= lim

x→∞

1/x

1
= 0

Therefore, the series converges, but only conditionally.

(b)
∞∑
n=1

en

n!

SOLUTION: Use the Ratio Test. Since all terms are positive for n ≥ 1, we can
leave off the absolute value signs:

lim
n→∞

en+1

(n+ 1)!

n!

en
= lim

n→∞

e

n+ 1
= 0 < 1

Therefore, the series converges absolutely.

(c)
∞∑
n=1

n3

en4

SOLUTION: The exponential in the denominator might be an issue for the ratio
test. However, we might see that this is set up for the integral test. If we take the
derivative and simplify we get:

y(n) =
n3

en4 ⇒ y′(n) =
n2

en4 (3− 4n4)

which is negative for n ≥ 1. We can use the integral test now:
∫ ∞
1

x3

ex4 dx.
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Let u = x4 and du = 4x3 dx. Changing the bounds, if x = 1 then u = 1, and as
x→∞, so does u:

1

4

∫ ∞
1

e−u du = lim
t→∞

(
−1

4
e−u

∣∣∣∣t
1

= 0−−1

4
=

1

4

Therefore, the series converges (absolutely).

(d)
∞∑
n=1

41−2n

SOLUTION: This is a geometric series. Re-writing 41−2n as arn, we get:

41−2n = 414−2n = 41
(

1

42

)n

so this is a geometric series with a = 4 and r = 1/16. The series then converges
absolutely, and it actually converges to:

4 · 1/16

1− (1/16)
=

4

15

(The question didn’t ask for what the sum converges to, but since we knew it, why
not provide it?)

2. Let an =
n+ ln(n)

n2
.

(a) Does the sequence {an} converge or diverge? If it converges, find what it converges
to.

SOLUTION: We can use l’Hospital’s rule to find what the sequence converges to:

lim
n→∞

n+ ln(n)

n2
= lim

n→∞

1 + 1/n

2n
= lim

n→∞

n+ 1

2n2
= lim

n→∞

1

4n
= 0

(b) Does the series
∞∑
n=1

an converge or diverge?

SOLUTION: We note that as n → ∞, then ln(n)/n → 0 (by l’Hospital’s rule).
Therefore, we could show that the series diverges by limit comparison with 1/n.
We have:

lim
n→∞

n2 + n ln(n)

n2
= lim

n→∞

1 + ln /n

1
= 1 + 0 = 1

Because this limit is between 0 and∞, our series diverges like the harmonic series.

ALTERNATE SOLUTION: You could use the integral test, and note that

x+ ln(x)

x2
=

1

x
+

ln(x)

x2

3. A bug is crawling along the graph of the curve y = 3x + 1 for x in the interval [0, t].
Find the distance the bug has traveled as a function of t.

SOLUTION: 1 + (y′)2 = 10, so ∫ t

0

√
1 + (y′)2 dx =

√
10 t
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4. Find the interval of convergence for each of the series:

(a)
∞∑
n=0

(2x− 3)n

n ln(n)
(TYPO: The series should start at n = 2...)

SOLUTION: Use the Ratio test, and get

lim
n→∞

n ln(n)

(n+ 1) ln(n+ 1)
|2x− 3|

Both

lim
n→∞

n

n+ 1
= 1 lim

n→∞

ln(n)

ln(n+ 1)
= lim

n→∞

1/n

1/(n+ 1)
= lim

n→∞

n+ 1

n
= 1

So the ratio converges to |2x− 3|. Therefore, the series converges absolutely if

|2x− 3| < 1 ⇒
∣∣∣∣2(x− 3

2

)∣∣∣∣ < 1 ⇒
∣∣∣∣x− 3

2

∣∣∣∣ < 1

2

The interval is centered at 3/2 with a radius of 1/2, so the endpoints are x = 1 and
x = 2, which need to be checked separately:

• At x = 2, we have:

∞∑
n=2

1

n ln(n)
⇒

∫ ∞
2

dx

x ln(x)
=
∫ ∞
ln(2)

u−1 du⇒ lim
t→∞

(ln(u)|∞ln(2)

which diverges.

• At x = 1, we have:

∞∑
n=2

(−1)n

n ln(n)
⇒ Converges using Alt Series Test

Therefore, the series converges on [1, 2)

(b)
∞∑
n=0

xn

n+ 1

SOLUTION: The Ratio test gives absolute convergence if |x| < 1. We check the
endpoints manually, at x = ±1. The interval of convergence is then [−1, 1)

(c)
∞∑
n=0

3nxn

5n

SOLUTION: We see that the terms can be written as(
3x

5

)n

which makes this a geometric series, and that converges only if∣∣∣∣3x5
∣∣∣∣ < 1 ⇒ |x| < 5

3
⇒

(
−5

3
,
5

3

)
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5. Expand the function f(x) =
2

4− 3x
as a power series centered at x = 0, and determine

the values of x for which the series converges.

SOLUTION 1: We could rewrite this to be the sum of a geometric series:

2

4

1

1−
(
3x
4

) =
1

2

1

1− (3x/4)
⇒ 1

2

∞∑
n=0

(
3x

4

)n

And this converges only for |3x/4| < 1, or |x| < 4/3.

SOLUTION 2: We could compute out the terms of the Maclaurin series:

n f (n)(x) f (n)(0)
0 2(4− 3x)−1 1/2
1 (−2)(−3)(4− 3x)−2 (1/2)(3/4)
2 (−2)(−3)2(−2)(4− 3x)−3 (1/2)(3/4)2(2)
3 (−2)(−3)3(−2)(−3)(4− 3x)−4 (1/2)(3/4)3(2 · 3)

⇒ f (n)(0) =
1

2
·
(

3

4

)n

· n!

From which the series becomes:

∞∑
n=0

1

2
·
(

3

4

)n

n! · 1

n!
xn =

1

2

∞∑
n=0

(
3x

4

)n

6. Evaluate the integral:

(a)
∫ x2√

16− x2
dx

SOLUTION: With an x2 in the numerator, it might be easiest to go with a trig
substitution (if only x in the numerator, we might use a regular substitution). In
this case, let x = 4 sin(θ) so that

√
16− x2 = 16− 16 sin2(θ) = 16 cos2(θ)

Furthermore, dx = 4 cos(θ) dθ, so we get:

∫ 16 sin2(θ) 4 cos(θ)dθ

4 cos(θ)
= 16

∫
sin2(θ)dθ = 8

∫
1− cos(2θ) dθ = 8θ − 4 sin(2θ)

= 8θ−8 sin(θ) cos(θ) = 8 sin−1
(
x

4

)
−8

x

4

√
16− x2

4
= 8 sin−1

(
x

4

)
−1

2
x
√

16− x2+C

(b)
∫

sin2(x) cos3(x) dx

SOLUTION: Keep one cos(x) reserved for a u, du substitution, with u = sin(x):∫
sin2(x) cos2(x) cos(x) dx =

∫
sin2(x)(1− sin2(x) cos(x) dx =

∫
u2(1− u2) du

=
1

3
u3 − 1

5
u5 =

1

3
sin3(x)− 1

5
sin5(x) + C
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(c)
∫
x2e−2x dx

Integrate by parts (using a table) to get:

−1

4
e−2x(1 + 2x+ 2x2) + C

(d)
∫

tan−1(x) dx

Integrate by parts (once) to get:

x tan−1(x)− 1

2
ln(1 + x2) + C

(e)
∫ x2 − x+ 1

x2 + x
dx

SOLUTION: Do long division first, and we get:∫
1 +

1− 2x

x2 + x
dx =

∫
1 +

1− 2x

x(x+ 1)
dx

The second integral is done by partial fractions:

1− 2x

x(x+ 1)
=
A

x
+

B

x+ 1
⇒ 1− 2x = A(x+ 1) +Bx

From which we get A = 1, B = −3. The full integral is then:

x+ ln |x| − 3 ln |x+ 1|+ C

(f)
∫ dx

x2 + 4x− 5
SOLUTION: You could use a trig substitution (and complete the square), but the
denominator factors, so we can use partial fractions:

1

x2 + 4x− 5
=

1

(x+ 5)(x− 1)
=

A

x+ 5
+

B

x− 1
⇒ 1 = A(x− 1) +B(x+ 5)

From which we get A = −1/6, B = 1/6 and the integral is:

−1

6
ln |x+ 5|+ 1

6
ln |x− 1|+ C

(g)
∫ 3

0
|x2 − 4| dx

SOLUTION: Break it up at x = 2:∫ 2

0
4− x2 dx+

∫ 3

2
x2 − 4 dx = · · · = 23

3

(h)
∫ 9

1

√
x− 2x2

x
dx

SOLUTION: The denominator is x−1, which can be multiplied through:∫ 9

1
(x1/2 − 2x2)x−1 dx =

∫ 9

1
x−1/2 − 2x dx = · · · = −76
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(i)
∫ 3

−3

sin(x)

x2 + 1
dx

SOLUTION: Kind of a trick question- The integrand is odd, so the integral is 0.

7. Evaluate
∫ dx

x2 − 1
dx two ways- Using partial fractions and using trig substitution.

SOLUTION: Using partial fractions, we get

−1

2
ln |x+ 1|+ 1

2
ln |x− 1|+ C

Using trig substitution, with x = sec(θ), we get:

∫ sec(θ) tan(θ) dθ

tan2(θ)
=
∫

csc(θ) dθ = ln | csc(θ)− cot(θ)|+ C

Back substitute for x:

ln

∣∣∣∣∣ x√
x2 − 1

− 1√
x2 − 1

∣∣∣∣∣ = ln

∣∣∣∣∣ x− 1√
x2 − 1

∣∣∣∣∣ = ln

∣∣∣∣∣
√
x− 1√
x+ 1

∣∣∣∣∣+ C

8. Determine if the integral converges or diverges. If it converges, determine what it con-

verges to.
∫ 9

−∞
e4x dx

SOLUTION: Converges to
1

4
e36

9. Does the integral converge or diverge (and give a short reason):
∫ ∞
8

sin2(x)e−x dx

The integral converges. We can compare it to e−x:

0 ≤ sin2(x)e−x ≤ e−x

And the integral on the right converges (See the Comparison Theorem, p. 525)

10. Consider the region in the first quadrant bounded by the curve y = 9−x2 with 0 ≤ x ≤ 3.
Consider the solid obtained by rotating that region about the x axis. Set up two integrals
that represent the volume of this solid- One using shells, and one using disks.

For disks, we’ll be integrating in x, and for shells, we’ll be integrating in y:

Shells:
∫ 9

0
2πy

√
9− y dy

Disks:
∫ 3

0
π(9− x2)2 dx

11. Same region as before. Set up an integral representing the volume (using any appropriate
technique) if the region is revolving about x = 4, and then if the region is revolving about
y = −2.
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• For x = 4, you could use shells or washers. With shells, the solution is:∫
2π(4− x)(9− x2) dx

• For y = −2, if you want to stay with x, you can use washers, whose inner radius is
2, and outer radius is y + 2 = 11− x2:∫ 3

0
π((11− x2)2 − 22) dx

12. A container weighing 50 lbs is filled with 20 ft3 of water. The container is raised vertically
at a constant speed of 2 ft/sec for 1 minute, during which time the water leaks out at a
rate of 1/3 ft3/sec. Calculate the total work performed in raising the container (ignore
the rope).

SOLUTION: We can compute the work on the bucket separately from the water.

We could write the volume of water as a function of time, but we can also write it as a
function of height x: Since we’re raising the bucket vertically at 2 ft/sec for 60 seconds,
we’ll be going 120 feet total.

During that time, we’ll have lost 1/3 ft3/sec ×60 sec= 20 ftft3, or the bucket will be
empty at 120 feet. Therefore, there will be how many cubic feet of water at x feet?

20− x

6

(I forgot to include the constant for water- It weighs about 62.5 lb/ft3). Don’t forget
the weight of the water- The work will therefore be:

50× 120 + 62.5
∫ 120

0
(20− x/6) dx

13. Use the definition of the definite integral (with right endpoints) to calculate the value

of
∫ 2

0
(x2 − x) dx.

(Hint: The formulas for
∑
i2 and

∑
i3 would be given to you).

SOLUTION: The ith right endpoint is 0 + i 2
n
, or 2i/n. Putting this into the Riemann

sum and taking the limit, we have

lim
n→∞

n∑
i=1

(
4i2

n2
− 2i

n

)
2

n
= lim

n→∞

[
8

n3

n∑
i=1

i2 − 4

n2

n∑
i=1

i

]

= lim
n→∞

[
8

n3

n(n+ 1)(2n+ 1)

6
− 4

n2

n(n+ 1)

2

]
=

8

3
− 2 =

2

3

14. Find the derivative of the function : y =
∫ x

√
x

et

t
dt

SOLUTION: Use the formula we derived, or derive it using the technique from pg 390:

dy

dx
=

e
√
x

√
x

1

2
√
x
− ex

x
=

e
√
x

2x
− ex

x
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15. Find the c guaranteed by the Mean Value Theorem for Integrals, if f(x) = 1/x on the
interval [1, 3]. Hint: It has something to do with the average value of f .

SOLUTION: The Mean Value Theorem for Integrals says that if f is continuous on [a, b]
then there is a c in [a, b] so that

f(c) =
1

b− a

∫ b

a
f(x) dx ⇒ 1

c
=

1

3− 1

∫ 3

1

1

x
dx⇒ 1

c
=

1

2
ln(x)|31 =

1

2
(ln(3)− ln(1))

Therefore, c =
2

ln(3)
(which is about 1.8).

16. What is wrong with the following proof:

Proof by induction that n+ 1 < n:

Assume true for n = k, so that k + 1 < k. We show that this implies k + 2 < k + 1:

Since k+ 2 = k+ 1 + 1 = (k+ 1) + 1 < k+ 1 by induction, then k+ 1 < k for all positive
integers k.

SOLUTION: We didn’t prove the “base” case- And in this instance, there is no base
case (since n+ 1 is smaller than n!).
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