Hints for Section 7.3

4. You can actually do either $x=\sin (\theta)$ (after that substitution, you can write everything in terms of $u=\cos (\theta)$), or you can try $u=1-x^{2}$ and $d u=-2 x d x$
5. Let $t=\sec (\theta)$, and you should end up with the integral of $\cos ^{2}(\theta)$.
6. Either use $x=6 \sin (\theta)$, and end up integrating just $\sin (\theta)$, or you can also take $u=36-x^{2}$, and $d u=-2 x d x$.
7. Let $x=a \cdot \tan (\theta)$, and end up integrating $\cos (\theta)$.
8. Let $t=4 \sec (\theta)$ and end up integrating $\cos (\theta)$. To get your answer back to t, use a triangle!
9. Let $x=4 \tan (\theta)$, and end up with the integral of $\sec (\theta)$.
10. Let $t=\sqrt{2} \tan (\theta)$, and end up with

$$
\int \tan ^{5}(\theta) \sec (\theta) d \theta=\int \tan ^{4}(\theta)[\tan (\theta) \sec (\theta) d \theta]
$$

Write $\tan ^{4}(\theta)$ in terms of the secant, and use $u=\sec (\theta)$.
11. Let $2 x=\sin (\theta)$. End up integrating $\cos ^{2}(\theta)$.
12. Let $u=\sqrt{5} \sin (\theta)$, and end up integrating $\csc (\theta)$ (use the table from class).
13. Let $x=3 \sec (\theta)$, and end up integrating $\sin ^{2}(\theta)$.
14. Let $x=\tan (\theta)$, end up integrating $\cos ^{2}(\theta)$.
15. Let $x=a \cdot \sin (\theta)$, and end up integrating

$$
\int \sin ^{2}(\theta) \cos ^{2}(\theta) d \theta=\int\left(\frac{1}{2} \sin (2 \theta)\right)^{2} d \theta=\frac{1}{4} \int \frac{1}{2}(1-\cos (4 \theta)) d \theta
$$

16. Let $x=\frac{1}{3} \sec (\theta)$, and end up integrating $\cos ^{4}(\theta)$ (use the table from class).
17. Let $u=x^{2}-7$, so $d u=2 x d x$
18. Let $a x=b \sec (\theta)$, end up integrating $\csc (\theta) \cot (\theta)$ (the antiderivative is $-\csc (\theta)$)
19. Let $x=\tan (\theta)$, and end up integrating $\csc (\theta)+\sec (\theta) \tan (\theta)$.
20. Let $u=1+x^{2}, d u=2 x d x$
21. Let $x=\frac{3}{5} \sin (\theta)$, and end up integrating $\sin ^{2}(\theta)$.
22. Let $x=\tan (\theta)$, and end up integrating $\sec ^{3}(\theta)$ (Use the table from class).
23. Complete the square so that $5+4 x-x^{2}=9-(x-2)^{2}$. Now we can substitute $x-2=3 \sin (\theta)$ and end up integrating $\cos ^{2}(\theta)$.
24. Complete the square so that $t^{2}-6 t+13=(t-3)^{2}+4$. Now substitute $t-3=2 \tan (\theta)$, and end up integrating $\sec (\theta)$.
25. Complete the square so that

$$
x^{2}+x+1=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4} \Rightarrow x+\frac{1}{2}=\frac{\sqrt{3}}{2} \tan (\theta)
$$

The integral simplifies to integrating $\tan (\theta) \sec (\theta)$ and $\sec (\theta)$.
26. Complete the square so that

$$
3+4 x-4 x^{2}=4-4\left(x-\frac{1}{2}\right)^{2}=4\left(1-\left(x-\frac{1}{2}\right)^{2}\right) \quad \Rightarrow \quad x-\frac{1}{2}=\sin (\theta)
$$

We end up integrating $\sec ^{2}(\theta), \tan (\theta) \sec (\theta)$ and $\tan ^{2}(\theta)$.
27. Complete the square so that $x^{2}+2 x=(x+1)^{2}-1$, and let $x+1=\sec (\theta)$. We end up integrating $\tan ^{2}(\theta) \sec (\theta)$ (write all in terms of $\sec (\theta)$ and use the table.
28. Complete the square so that $x^{2}-2 x+2=(x-1)^{2}+1$, and let $x-1=\tan (\theta)$. We end up integrating $\sin ^{2}(\theta)+2 \sin (\theta) \cos (\theta)+2 \cos ^{2}(\theta)$.
29. Let $u=x^{2}$ and $d u=2 x d x$. Then let $u=\sin (\theta)$ (or do the substitution directly by taking $x^{2}=\sin (\theta)$, etc. End up integrating $\cos ^{2}(\theta)$.

31(a) Let $x=a \tan (\theta)$, and end up integrating $\sec (\theta)$.
33. First, set up the average value:

$$
\frac{1}{6} \int_{1}^{7} \frac{\sqrt{x^{2}-1}}{x} d x
$$

Then take $x=\sec (\theta)$, etc. End up integrating $\tan ^{2}(\theta)$.
35. The area of the triangle $P O Q$ is

$$
\frac{1}{2}(r \cos (\theta))(r \sin (\theta))=\frac{1}{2} r^{2} \cos (\theta) \sin (\theta)
$$

The area of $P Q R$ is

$$
\int_{r \cos (\theta)}^{r} \sqrt{r^{2}-x^{2}} d x
$$

We find that the area of the desired sector is the sum of the area of the triangle and the area using the integral above. Summing these, we get $\frac{1}{2} r^{2} \theta$.
37. Use disks about the x-axis. We end up integrating $1 /\left(x^{2}+9\right)^{2}$, so use $x=3 \tan (\theta)$, and end up integrating $\cos ^{2}(\theta)$.

