Homework Hints, Section 7.8

5. Let $u=x-2$.
6. Let $u=3-4 x$
7. Recall that $\int 2^{r} d r=2^{r} / \ln (r)$. (Converges)
8. Break it up- A convenient point is at 0 :

$$
\int_{-\infty}^{0} x \mathrm{e}^{-x^{2}} d x+\int_{0}^{\infty} x \mathrm{e}^{-x^{2}} d x
$$

14. Let $u=\sqrt{x}$. (Converges)
15. Integrate by parts. (Converges)
16. $u=\ln (x)$.
17. Either integrate directly or use $u=x+2$
18. Break it up- There's a vertical asymptote at $x=0$.
19. Integrate $z^{2} \ln (z)$ by parts. At some point, you might have to take the limit of $t^{3}(3 \ln (t)-1)$. You might re-write this as $(3 \ln (t)-1) / t^{-3}$ for l'Hospital.
20. Area is $\int_{1}^{\infty} \mathrm{e}^{-x} d x$
21. Note that $\frac{x}{x^{3}+1}<\frac{x}{x^{3}}$ or use limit comparison with $1 / x^{2}$.
22. Note that $\frac{2+\mathrm{e}^{-x}}{x}>\frac{2}{x}$, or use limit comparison with $1 / x$ (Diverges).
23. Break it up and deal with the integrals separately

$$
\int_{0}^{1} \frac{1}{\sqrt{x}(1+x)} d x+\int_{1}^{\infty} \frac{1}{\sqrt{x}(1+x)} d x
$$

56. Note that there is a discontinuity at $x=2$, so break it up as

$$
\int_{2}^{3} \frac{d x}{x \sqrt{x^{2}-4}}+\int_{3}^{\infty} \frac{d x}{x \sqrt{x^{2}-4}}
$$

Use trig substitution. (Converges to $\pi / 4)$)
57. We did this one in class.
71. For part (a), note that $\int \mathrm{e}^{-s t} d t$ is $-\mathrm{e}^{-s t} / s$. Something similar for part (b) and (c).

