Selected Solutions, Section 4.9

- 10. Note that e^2 is a constant, so the antiderivative is e^2C
- 17. The antiderivative is $-2\cos(\theta) \tan(\theta) + C$, but notice that the C can change because $\sec(\theta)$ has a lot of vertical asymptotes, breaking up the real line. Therefore, you might specify the interval, like "for x in $(-\pi/2, \pi/2)$, and the constant can change for other intervals". Or, you can specify the intervals like they do in the text solution.
- 42. The hint on these types of problems is to rewrite them first. In this case,

$$f''(t) = 3t^{-1/2} \implies f'(t) = 3 \cdot 2t^{1/2} + C = 6t^{1/2} + C$$

Using f'(4) = 7, we get C = -5, and then

$$f(t) = 6 \cdot \frac{2}{3}t^{3/2} - 5t + C_2 = 4t^{3/2} - 5t + C_2$$
 $f(4) = 20$

We recognize that $4^{3/2} = 2^3 = 8$, so substituting x = 4, we get

$$12 + C_2 = 20 \implies C_2 = 8$$

so
$$f(t) = 4t^{3/2} - 5t + 8$$
.

46. We should find that

$$f(t) = 2e^{t} - 3\sin(t) + \frac{2 - 2e^{\pi}}{\pi}t - 2$$

50. From what is given, we know that the antiderivative is $f(x) = \frac{1}{4}x^4 + C$ for some C. We also know that y = -x is the equation of the tangent line at some value of x. Since $f'(x) = x^3$, that point must be at x = -1. From the equation of the line, y = -(-1) = 1, so the point (-1, 1) must be on the graph of f, and so

$$f(x) = \frac{1}{4}x^4 + \frac{3}{4}$$

- 52. You should find that a is the antiderivative.
- 54. (Graphed in class)
- 77. In this problem (like in 74, done in class), we have to be careful about mixing units. We're told that

$$v(0) = 100$$
 $a(t) = -k$ \Rightarrow $v(t) = -kt + 100$

The vehicle will therefore stop at time -kt + 100 = 0, or t = 100/k.

The position is

$$s(t) = -\frac{1}{2}k^2t + 100t + C$$

If we assume S(0) = 0 = C, then wanting to stop within 80 meters means (in km):

1

$$s(100/k) = 80 \implies -\frac{k}{2} \left(\frac{100}{k}\right)^2 + 100 \cdot \frac{100}{k} = 0.08$$

Solving for k, we get

$$k = \frac{100^3}{16} = 62,500 \text{km/hr}^2$$

If we want to convert this into meters and seconds, the answer would be

$$\frac{62500~{\rm km}}{1~{\rm hr}^2} \cdot \frac{1000~{\rm m}}{1~{\rm km}} \cdot \frac{1~{\rm hr}}{3600~{\rm sec}} \, \frac{1~{\rm hr}}{3600~{\rm sec}} \approx 4.82 {\rm m/s}^2$$