Selected Solutions, Section 5.2

1. This is good practice in taking left endpoints.

In this case, f(z) = 3 — x/2, and the interval is [2,14]. The Riemann sum using 6
rectangles will use:

e Width of each rectangle: (14 —2)/6 =12/6 = 2.

e The height of the rectangles will be evaluated at left endpoints. Subdividing the
interval using 6 equal subintervals gives us endpoints:

2.4,6,8,10,12, 14
so that “left endpoints” are 2,4,6, 8,10, 12.
e The area is computed as f(z}) = 3 — z}/2, or using left endpoints:
2+14+0-1-2-3)-2=—-6

9
8. The table is used to estimate / f(z) dz using 3 equal subintervals. The intervals then
3

have endpoints
3,5,7,9

(a) Using right endpoints, the area is approximately:
((—0.6) + (0.9) + (1.8))2 = 4.2

Since f is increasing, right endpoints give an overestimate.

(b) Using left endpoints, the area is approximately:
((—3.4) + (—0.6) + (0.9))2 = —6.2

Left endpoints give an underestimate for an increasing function.

(c) Using midpoints:
((=2.1) + (0.3) + (1.4))2 = —0.8

This is probably more accurate than the other two.

18.  For problems 17-19, we want to compare what is given to the formula in the text,
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In this particular case, the expression looks like
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This is similar to the one we did in class (we did [ 2% + 1dz). “Theorem 4” uses right
endpoints.

Before getting started, note that the widths are (0 — —2)/n = 2/n, and the “i'' right
endpoint” is —2 + 2i/n. Therefore,

15 ° 24\ 2 21 2
/ (2% + x) dv = limz<(—2+l> —|—<—2—|—Z>>-
-2 n_>ooi:1 n n n

Simplify those heights first by expanding the product out and simplifying. One way is
to evaluate z* + x as x(z + 1):
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Multiply by 2/n and bring in the sum:
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This exercise is very similar to the last one. Using right endpoints, the width of each
rectangle is (b—a)/n. The i*" right endpoint is a+i(b—a)/n, and in this case, f(x) = .
Therefore,
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For #37, recall that 2? + y? = r? is a circle of radius r centered at the origin. Solving
for y, we could express the upper half of a circle of radius r as:
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Therefore, the function f(z) = 1+ /9 — 22 is the upper half of a circle of radius 3
(centered at the origin) and shifted up one unit. The integral is using the interval
[—3,0], so the area in this case,
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is the area of 1/4 of the circle, plus the rectangle of height 1:
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We want to re-write the integral as
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and use geometry for the last two integrals. The first/last are easy to compute. For the
middle one, draw a sketch and use the area of a triangle. You should find that (in order)
the values are:

—-3-124+30=15

For this exercise, note that f(x) = 2? — 4z + 4 = (z — 4)?, so that f(z) > 0. Therefore,
4
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To use Property 8, we have to find the minimum m and maximum M of \/z on the
interval [1,4]. Since the function is increasing, the minimum is v/1 = 1 = m and the
maximum is V4 = 2 = M. Therefore,
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4
3§/ Jzdr <6
1



