Selected Solutions, Section 5.2

1. This is good practice in taking *left* endpoints.

In this case, f(x) = 3 - x/2, and the interval is [2,14]. The Riemann sum using 6 rectangles will use:

- Width of each rectangle: (14-2)/6 = 12/6 = 2.
- The height of the rectangles will be evaluated at left endpoints. Subdividing the interval using 6 equal subintervals gives us endpoints:

so that "left endpoints" are 2, 4, 6, 8, 10, 12.

• The area is computed as $f(x_i^*) = 3 - x_i^*/2$, or using left endpoints:

$$(2+1+0-1-2-3)\cdot 2=-6$$

8. The table is used to estimate $\int_3^9 f(x) dx$ using 3 equal subintervals. The intervals then have endpoints

(a) Using right endpoints, the area is approximately:

$$((-0.6) + (0.9) + (1.8))2 = 4.2$$

Since f is increasing, right endpoints give an overestimate.

(b) Using left endpoints, the area is approximately:

$$((-3.4) + (-0.6) + (0.9))2 = -6.2$$

Left endpoints give an underestimate for an increasing function.

(c) Using midpoints:

$$((-2.1) + (0.3) + (1.4))2 = -0.8$$

This is probably more accurate than the other two.

18. For problems 17-19, we want to compare what is given to the formula in the text,

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

In this particular case, the expression looks like

$$\int_{\pi}^{2\pi} \frac{\cos(x)}{x} \, dx$$

1

23. This is similar to the one we did in class (we did $\int x^2 + 1 dx$). "Theorem 4" uses right endpoints.

Before getting started, note that the widths are (0 - 2)/n = 2/n, and the "ith right endpoint" is -2 + 2i/n. Therefore,

$$\int_{-2}^{15} (x^2 + x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} \left(\left(-2 + \frac{2i}{n} \right)^2 + \left(-2 + \frac{2i}{n} \right) \right) \cdot \frac{2}{n}$$

Simplify those heights first by expanding the product out and simplifying. One way is to evaluate $x^2 + x$ as x(x + 1):

$$\left(-2 + \frac{2i}{n}\right) \left[\left(-2 + \frac{2i}{n}\right) + 1 \right] = \left(-2 + \frac{2i}{n}\right) \left(-1 + \frac{2i}{n}\right) = 2 - \frac{6i}{n} + \frac{4i^2}{n^2}$$

Multiply by 2/n and bring in the sum:

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{4}{n} - \frac{12i}{n^2} + \frac{8i^2}{n^3} \right) = \lim_{n \to \infty} \left[\frac{4}{n} \sum_{i=1}^{n} 1 - \frac{12}{n^2} \sum_{i=1}^{n} i + \frac{8}{n^3} \sum_{i=1}^{n} i^2 \right]$$

$$= \lim_{n \to \infty} \left[4 - \frac{12}{n^2} \cdot \frac{n(n+1)}{2} + \frac{8}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} \right] = 4 - 6 + \frac{8}{3} = \frac{2}{3}$$

27. This exercise is very similar to the last one. Using right endpoints, the width of each rectangle is (b-a)/n. The i^{th} right endpoint is a+i(b-a)/n, and in this case, f(x)=x. Therefore,

$$\int_{a}^{b} x \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} \left(a + \frac{(b-a)i}{n} \right) \left(\frac{b-a}{n} \right) = \lim_{n \to \infty} \sum_{i=1}^{n} \left(\frac{a(b-a)}{n} + \frac{(b-a)^{2}i}{n^{2}} \right)$$

$$= \lim_{n \to \infty} \left[\frac{a(b-a)}{n} \sum_{i=1}^{n} 1 + \frac{(b-a)^{2}}{n^{2}} \sum_{i=1}^{n} i \right] = \lim_{n \to \infty} \left[a(b-a) + \frac{(b-a)^{2}}{n^{2}} \cdot \frac{n(n+1)}{2} \right]$$

$$= a(b-a) + \frac{(b-a)^{2}}{2} = (b-a) \left(a + \frac{b-a}{2} \right) = \frac{1}{2} (b-a)(b+a) = \frac{b^{2}-a^{2}}{2}$$

37. For #37, recall that $x^2 + y^2 = r^2$ is a circle of radius r centered at the origin. Solving for y, we could express the upper half of a circle of radius r as:

$$y = \sqrt{r^2 - x^2}$$

Therefore, the function $f(x) = 1 + \sqrt{9 - x^2}$ is the upper half of a circle of radius 3 (centered at the origin) and shifted up one unit. The integral is using the interval [-3,0], so the area in this case,

$$\int_{-3}^{0} (1 + \sqrt{9 - x^2}) \, dx$$

is the area of 1/4 of the circle, plus the rectangle of height 1:

$$\int_{-3}^{0} (1 + \sqrt{9 - x^2}) \, dx = 1 \cdot 3 + \frac{1}{4} \pi 3^2 = 3 + \frac{9}{4} \pi$$

53. We want to re-write the integral as

$$\int_{-4}^{3} f(x) dx + 2 \int_{-4}^{3} x dx + \int_{-4}^{3} 5 dx$$

and use geometry for the last two integrals. The first/last are easy to compute. For the middle one, draw a sketch and use the area of a triangle. You should find that (in order) the values are:

$$-3 - 12 + 30 = 15$$

55. For this exercise, note that $f(x) = x^2 - 4x + 4 = (x-4)^2$, so that $f(x) \ge 0$. Therefore,

$$\int_0^4 f(x) \, dx \ge 0 \cdot (4 - 0) = 0$$

59. To use Property 8, we have to find the minimum m and maximum M of \sqrt{x} on the interval [1,4]. Since the function is increasing, the minimum is $\sqrt{1} = 1 = m$ and the maximum is $\sqrt{4} = 2 = M$. Therefore,

$$1(4-1) \le \int_1^4 \sqrt{x} \, dx \le 2(4-1)$$

or

$$3 \le \int_1^4 \sqrt{x} \, dx \le 6$$