Calculus II

For the Exam...

- The exam will be about $1\frac{1}{2}$ times the length of a normal exam, and we have twice the amount of time to take it, so if you're well prepared, then time should not be an issue.
- As a reminder- If you do well on the final, then your lowest exam score will be replaced by the average of it and the final, so try your best!
- No calculators will be allowed, and no notes. However, I will provide the table of integrals and the sum formulas for $\sum i^2$ and $\sum i^3$.
- For the Friday afternoon final, we'll start 30 minutes early.
- If you are free during those times, you may switch sections for the final exam- Please let me know a day or two in advance so I know how many copies I'll need and where you'll be.

The Integral in Theory

- How to write a "proof by induction" (and do a proof by induction for some basic statements).
- The definition of the definite integral.
 - Write an integral from a Riemann sum.
 - Write a Riemann sum from an integral.
- Interpret the integral in terms of geometry.
- The Fundamental Theorem of Calculus, Part I.
 - Sets $g(x) = \int_a^x f(t) dt$ as a differentiable function of x.
 - Says that this function is a particular antiderivative of f, g(a) = 0.
 - Be able to differentiate:

$$\frac{d}{dx} \int_{g(x)}^{h(x)} f(t) \, dt$$

• The Fundamental Theorem of Calculus, Part II. The main computational tool of Calculus: If F is any antiderivative of the continuous function f,

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

• Understand the difference in notation:

$$\int f(x) dx \qquad \int_a^x f(t) dt \qquad \int_a^b f(x) dx$$

1

• Understand the difference in notation:

$$\int_{a}^{b} \frac{d}{dx} f(x) dx \qquad \frac{d}{dx} \int_{a}^{x} f(t) dt \qquad \frac{d}{dx} \int_{a}^{b} f(x) dx$$

• The Mean Value Theorem for Integrals. The average value of f is attained at some c in [a, b]. That is, if f is continuous on [a, b], then there is a c in the interval so that:

$$f_{\text{avg}} = f(c) = \frac{1}{b-a} \int_a^b f(x) \, dx$$

Or, the area of the rectangle whose length is b-a and whose height is f(c) is equal to the integral:

$$f(c)(b-a) = \int_a^b f(x) \, dx$$

• The improper integral (Types I and II) is approximated by a definite integral, and is defined by taking the limit. For example,

$$\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx$$

NOTE: We need to recall techniques for computing a limit. For example, (i) algebraically simplify, (b) divide by x^n for some n, (c) l'Hospital's rule.

The Integral in Practice

We had several methods to evaluate an integral:

- Using geometry.
- u, du, or Substitution (Backwards Chain Rule)
- u, dv, or Integration by Parts (be able to use the tabular form of this)
- Partial Fractions. Also, be able to integrate something of the form $\int \frac{ax+b}{x^2+c} dx$
- Powers of sine and cosine. In particular, remember the formulas for $\sin^2(x)$ and $\cos^2(x)$.
- Trigonometric substitution and the use of reference triangles.

Note: Even though a table of integrals will be provided, there are some types of integrals we should still be able to do (See the review sheet for Exam 3).

• The table of integrals can be used as well.

Applications of the Integral

• Be able to compute the volume of a solid of revolution using disks, washers and shells. Let w be either x or y, depending on how the functions are defined. Then:

$$\int_a^b \pi R^2 dw \qquad \pi \int_a^b (R^2 - r^2) dw \qquad \int_a^b 2\pi r h dw$$

• Be able to compute the arc length of a curve.

$$ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$
 or $ds = \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$

Then the arc length is $\int_a^b ds$

• Be able to compute *work*: For a rope/chain being pulled up. For the "leaky bucket". For the work required to pump fluid from a tank.

Sequences to Series to Power Series to Taylor Series

Note the evolution of our notation in these sections:

$$\{a_n\}_{n=1}^{\infty}$$
, $\sum_{k=1}^{\infty} a_k$, $\sum_{k=1}^{\infty} c_k (x-a)^k$, $\sum_{k=1}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$

- Sequences:
 - What is a sequence?
 - Be able to determine if a sequence converges or diverges (Monotonic Sequence Theorem can be used, l'Hospital's rule, divide by an appropriate quantity, etc.)
- Series: $\sum_{n=1}^{\infty} a_n$
 - Template series: Geometric Series (and the formula for the sum of a geometric series), p—series, harmonic series, alternating harmonic series.
 - Convergence of the Series:
 - $\ast\,$ Test for divergence.
 - * (For positive series) The direct $(a_n \leq b_n)$ and limit comparison $(\lim_{n \to \infty} \frac{a_n}{b_n})$ tests.
 - * (For positive series) The integral test, where $f(n) = a_n$ We integrate f(x).
 - * (For abs convergence) The Ratio Test and Root Tests. The Ratio Test is by far the most widely used test:

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$$

* Check conditional convergence last: Alternating Series Test.

(The series has terms with alternating signs, the (abs value of the) terms are decreasing and the limit is zero).

3

• Power Series:
$$\sum_{k=1}^{\infty} c_k (x-a)^k$$

- We have one of three choices for convergence. The series converges: (i) Only at x = a, (ii) for all x, or (iii) for |x a| < R, and diverges for |x a| > R. We say that R is the radius of convergence.
- Convergence is usually determined by the Ratio Test. We must check the endpoints of the interval separately (which gives the *interval of convergence*).
- Be able to get new series from a given series by differentiation or integration.

• Taylor Series:
$$\sum_{k=1}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$$
 or Maclaurin: $\sum_{k=1}^{\infty} \frac{f^{(k)}(0)}{k!} x^k$

- Construct a Taylor series for an *analytic* function f based at x = a (or a Maclaurin series, which is a Taylor series based at a = 0).
- Template series: e^x , $\sin(x)$, $\cos(x)$, $\frac{1}{1-x}$
- Find the sum of a series by recognizing it as a familiar Taylor series.