Review Problems: Chapter 11

- 1. What does it mean to say that a series "converges" (I'm looking for the definition; be sure you define any notation you use).
- 2. Does the given sequence or series converge or diverge?

(a)
$$\sum_{n=2}^{\infty} \frac{1}{n - \sqrt{n}}$$

(e)
$$\sum_{n=1}^{\infty} (-6)^{n-1} 5^{1-n}$$

(j)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}$$

(b)
$$\left\{\frac{n}{1+\sqrt{n}}\right\}$$

(f)
$$\left\{\frac{n!}{(n+2)!}\right\}$$

(g) $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{5^n n!}$
(k) $\sum_{n=1}^{\infty} \frac{\sin^2(n)}{n \sqrt{n}}$
(l) $\sum_{n=1}^{\infty} \frac{(-5)^{2n}}{n^2 9^n}$

$$(k) \sum_{n=1}^{\infty} \frac{\sin^2(n)}{n\sqrt{n}}$$

(c)
$$\sum_{n=2}^{\infty} \frac{n^2+1}{n^3-1}$$

(h)
$$\sum_{n=2}^{\infty} \frac{3^n + 2^n}{6^n}$$

(1)
$$\sum_{n=1}^{\infty} \frac{(-5)^{2n}}{n^2 9^n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{5 - 2\sqrt{n}}{n^3}$$

(i)
$$\left\{ \sin\left(\frac{n\pi}{2}\right) \right\}$$

(m)
$$\sum_{n=1}^{\infty} \frac{n}{(n+1)2^n}$$

3. Find the sum of the series

(a)
$$\sum_{n=1}^{\infty} \frac{(-3)^{n-1}}{2^{2n}}$$

(b)
$$\sum_{n=2}^{\infty} \frac{(x-3)^{2n}}{3^n}$$

(c)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{3^{2n} (2n!)}$$

Hint for 2(c): Does the series look familiar?

4. Find the radius of convergence. For the last two, include the interval of convergence.

(a)
$$\sum \frac{n!x^n}{1 \cdot 3 \cdot 5 \cdots (2n-1)}$$
 (b) $\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n^2 5^n}$ (c) $\sum_{n=0}^{\infty} \frac{2^n (x-3)^n}{\sqrt{n+3}}$

(b)
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n^2 5^n}$$

(c)
$$\sum_{n=0}^{\infty} \frac{2^n (x-3)^n}{\sqrt{n+3}}$$

- 5. Use a series to evaluate the following limit: $\lim_{x\to 0} \frac{\sin(x) x}{x^3}$
- 6. Use a known template series to find a series for the following:

(a)
$$\frac{x^2}{1+x}$$

(b)
$$10^x$$

(c)
$$xe^{2x}$$

Hint for 5(b): $10^x = e^{\ln(10^x)} = e^{x \ln(10)}$

7. Find the Taylor series for f(x) centered at the given base point:

(a)
$$x^4 - 3x^2 + 1$$
, at $x = 1$

(b) $1/\sqrt{x}$ at x=9 (just get the first four non-zero terms of the power series).

1

- (c) x^{-2} at x=1. In this case, find a pattern for the n^{th} coefficient so that you can write the general series. Using this answer, find the radius of convergence.
- 8. True or False, and give a short reason:
 - (a) If $\lim_{n\to\infty} a_n = 0$, then the series $\sum a_n$ is convergent.

- (b) If $\sum c_n 6^n$ is convergent, so is $\sum c_n (-2)^n$.
- (c) The Ratio Test can be used to determine if a p-series is convergent.
- (d) If $0 \le a_n \le b_n$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.
- (e) 0.9999999... = 1
- (f) If $a_n > 0$ and $\sum a_n$ converges, then $\sum (-1)^n a_n$ converges.
- (g) If $f(x) = 2x x^2 + \frac{1}{3}x^3 \cdots$ converges for all x, then f'''(0) = 2.
- 9. Suppose that $\sum_{n=0}^{\infty} c_n(x-1)^n$ converges when x=3 and diverges when x=-2. What can be said about the convergence or divergence of the following?
 - (a) $\sum c_n$

- (b) $\sum (-1)^n c_n$
- (c) $\sum c_n 3^n$
- 10. Find the sum: $\sum_{n=2}^{\infty} \frac{n(n-1)}{2^n}$ Hint: Use the geometric series and the derivative
- 11. Find the Maclaurin series for ln(x+1) and find the radius of convergence.
- 12. Find the sum: $3 + \frac{9}{2!} + \frac{27}{3!} + \frac{81}{4!} + \cdots$
- 13. Let $a_n = \frac{2n}{3n+1}$
 - (a) Determine whether $\{a_n\}$ is convergent.
 - (b) Determine whether $\sum_{n=1}^{\infty} a_n$ is convergent.
- 14. Same as the previous problem, but use $a_n = \frac{1+2^n}{3^n}$
- 15. Compute the sum $1 + a + a^2 + a^3 + a^4 + a^5 + a^6 + a^7$.

Hint: Your answer should be in terms of a fraction. You might start with s equal to the expression above.

16. Explain the difference between absolute and conditional convergence. Which is "better" and why?