Final Exam Review Calculus II Sheet 3

1. Determine if the series converges (absolute or conditional) or diverges:

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \ln(n)}{n}$$
 (c) $\sum_{n=1}^{\infty} \frac{n^3}{e^{n^4}}$
(b) $\sum_{n=1}^{\infty} \frac{e^n}{n!}$ (d) $\sum_{n=1}^{\infty} 4^{1-2n}$

2. Let $a_n = \frac{n + \ln(n)}{n^2}$.

(a) Does the sequence $\{a_n\}$ converge or diverge? If it converges, find what it converges to.

(b) Does the series
$$\sum_{n=1}^{\infty} a_n$$
 converge or diverge?

- 3. A bug is crawling along the graph of the curve y = 3x + 1 for x in the interval [0, t]. Find the distance the bug has traveled as a function of t.
- 4. Find the interval of convergence for each of the series:

(a)
$$\sum_{n=0}^{\infty} \frac{(2x-3)^n}{n\ln(n)}$$
 (b) $\sum_{n=0}^{\infty} \frac{x^n}{n+1}$ (c) $\sum_{n=0}^{\infty} \frac{3^n x^n}{5^n}$

- 5. Expand the function $f(x) = \frac{2}{4-3x}$ as a power series centered at x = 0, and determine the values of x for which the series converges.
- 6. Evaluate the integral:

(a)
$$\int \frac{x^2}{\sqrt{16 - x^2}} dx$$
 (d) $\int \tan^{-1}(x) dx$ (g) $\int_0^3 |x^2 - 4| dx$
(b) $\int \sin^2(x) \cos^3(x) dx$ (e) $\int \frac{x^2 - x + 1}{x^2 + x} dx$ (h) $\int_1^9 \frac{\sqrt{x} - 2x^2}{x} dx$
(c) $\int x^2 e^{-2x} dx$ (f) $\int \frac{dx}{x^2 + 4x - 5}$ (i) $\int_{-3}^3 \frac{\sin(x)}{x^2 + 1} dx$

- 7. Evaluate $\int \frac{dx}{x^2 1} dx$ two ways- Using partial fractions and using trig substitution.
- 8. Determine if the integral converges or diverges. If it converges, determine what it converges to. $\int_{-\infty}^{9} e^{4x} dx$
- 9. Find a series for $x \tan^{-1}(x^2)$. Hint: You might start with the series for $\tan^{-1}(x)$, which is related to the series for $1/(1+x^2)$.

- 10. Consider the region in the first quadrant bounded by the curve $y = 9-x^2$ with $0 \le x \le 3$. Consider the solid obtained by rotating that region about the x axis. Set up two integrals that represent the volume of this solid. One using shells, and one using disks.
- 11. Same region as before. Set up an integral representing the volume (using any appropriate technique) if the region is revolving about x = 4, and then if the region is revolving about y = -2.
- 12. Use differentiation to find a power series for

$$f(x) = \frac{1}{(1+x)^2}$$

13. Use the *definition* of the definite integral (with right endpoints) to calculate the value of $\int_{0}^{2} (x^{2} - x) dx$.

(Hint: The formulas for $\sum i^2$ and $\sum i^3$ would be given to you).

- 14. Find the derivative of the function : $y = \int_{\sqrt{x}}^{x} \frac{e^{t}}{t} dt$
- 15. Find the c guaranteed by the Mean Value Theorem for Integrals, if f(x) = 1/x on the interval [1,3]. Hint: It has something to do with the average value of f.
- 16. What is wrong with the following proof:

Proof by induction that n + 1 < n:

Assume true for n = k, so that k + 1 < k. We show that this implies k + 2 < k + 1:

Since k + 2 = k + 1 + 1 = (k + 1) + 1 < k + 1 by induction, then k + 1 < k for all positive integers k.