Final Exam Review
Calculus 11
Sheet 3

. Determine if the series converges (absolute or conditional) or diverges:
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. Let a,, = n—i—;l(n)

(a) Does the sequence {a,} converge or diverge? If it converges, find what it converges

to.
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(b) Does the series »  a,, converge or diverge?
n=1

. A bug is crawling along the graph of the curve y = 3z + 1 for x in the interval [0, ¢].
Find the distance the bug has traveled as a function of ¢.

. Find the interval of convergence for each of the series:
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. Expand the function f(z) = 43, 25 & power series centered at x = 0, and determine
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the values of x for which the series converges.

. Evaluate the integral:
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. Evaluate / 5 a 7 dx two ways- Using partial fractions and using trig substitution.
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. Determine if the integral converges or diverges. If it converges, determine what it con-
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verges to. / e dx
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. Find a series for x tan~'(2?). Hint: You might start with the series for tan™!(z), which
is related to the series for 1/(1 + x2).
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Consider the region in the first quadrant bounded by the curve y = 9—22 with 0 < z < 3.
Consider the solid obtained by rotating that region about the x axis. Set up two integrals
that represent the volume of this solid- One using shells, and one using disks.

Same region as before. Set up an integral representing the volume (using any appropriate
technique) if the region is revolving about 2 = 4, and then if the region is revolving about
y=—2.

Use differentiation to find a power series for
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f(if):m

Use the definition of the definite integral (with right endpoints) to calculate the value
2
of/ (2% — ) dx.
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(Hint: The formulas for 3-i? and ¥ ¢* would be given to you).
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Find the derivative of the function : y = /f % dt
Find the ¢ guaranteed by the Mean Value Theorem for Integrals, if f(x) = 1/x on the
interval [1, 3]. Hint: It has something to do with the average value of f.
What is wrong with the following proof:
Proof by induction that n + 1 < n:
Assume true for n = k, so that £+ 1 < k. We show that this implies k + 2 < k + 1:

Since k+2=k+1+1=(k+1)+1 < k+1 by induction, then k+1 < k for all positive
integers k.



