Final Exam Review
 Calculus II
 Sheet 3

1. Determine if the series converges (absolute or conditional) or diverges:
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n} \ln (n)}{n}$
(c) $\sum_{n=1}^{\infty} \frac{n^{3}}{\mathrm{e}^{4}}$
(b) $\sum_{n=1}^{\infty} \frac{\mathrm{e}^{n}}{n!}$
(d) $\sum_{n=1}^{\infty} 4^{1-2 n}$
2. Let $a_{n}=\frac{n+\ln (n)}{n^{2}}$.
(a) Does the sequence $\left\{a_{n}\right\}$ converge or diverge? If it converges, find what it converges to.
(b) Does the series $\sum_{n=1}^{\infty} a_{n}$ converge or diverge?
3. A bug is crawling along the graph of the curve $y=3 x+1$ for x in the interval $[0, t]$. Find the distance the bug has traveled as a function of t.
4. Find the interval of convergence for each of the series:
(a) $\sum_{n=0}^{\infty} \frac{(2 x-3)^{n}}{n \ln (n)}$
(b) $\sum_{n=0}^{\infty} \frac{x^{n}}{n+1}$
(c) $\sum_{n=0}^{\infty} \frac{3^{n} x^{n}}{5^{n}}$
5. Expand the function $f(x)=\frac{2}{4-3 x}$ as a power series centered at $x=0$, and determine the values of x for which the series converges.
6. Evaluate the integral:
(a) $\int \frac{x^{2}}{\sqrt{16-x^{2}}} d x$
(d) $\int \tan ^{-1}(x) d x$
(g) $\int_{0}^{3}\left|x^{2}-4\right| d x$
(b) $\int \sin ^{2}(x) \cos ^{3}(x) d x$
(e) $\int \frac{x^{2}-x+1}{x^{2}+x} d x$
(h) $\int_{1}^{9} \frac{\sqrt{x}-2 x^{2}}{x} d x$
(c) $\int x^{2} \mathrm{e}^{-2 x} d x$
(f) $\int \frac{d x}{x^{2}+4 x-5}$
(i) $\int_{-3}^{3} \frac{\sin (x)}{x^{2}+1} d x$
7. Evaluate $\int \frac{d x}{x^{2}-1} d x$ two ways- Using partial fractions and using trig substitution.
8. Determine if the integral converges or diverges. If it converges, determine what it converges to. $\int_{-\infty}^{9} \mathrm{e}^{4 x} d x$
9. Find a series for $x \tan ^{-1}\left(x^{2}\right)$. Hint: You might start with the series for $\tan ^{-1}(x)$, which is related to the series for $1 /\left(1+x^{2}\right)$.
10. Consider the region in the first quadrant bounded by the curve $y=9-x^{2}$ with $0 \leq x \leq 3$. Consider the solid obtained by rotating that region about the x axis. Set up two integrals that represent the volume of this solid- One using shells, and one using disks.
11. Same region as before. Set up an integral representing the volume (using any appropriate technique) if the region is revolving about $x=4$, and then if the region is revolving about $y=-2$.
12. Use differentiation to find a power series for

$$
f(x)=\frac{1}{(1+x)^{2}}
$$

13. Use the definition of the definite integral (with right endpoints) to calculate the value of $\int_{0}^{2}\left(x^{2}-x\right) d x$.
(Hint: The formulas for $\sum i^{2}$ and $\sum i^{3}$ would be given to you).
14. Find the derivative of the function : $y=\int_{\sqrt{x}}^{x} \frac{\mathrm{e}^{t}}{t} d t$
15. Find the c guaranteed by the Mean Value Theorem for Integrals, if $f(x)=1 / x$ on the interval $[1,3]$. Hint: It has something to do with the average value of f.
16. What is wrong with the following proof:

Proof by induction that $n+1<n$:
Assume true for $n=k$, so that $k+1<k$. We show that this implies $k+2<k+1$:
Since $k+2=k+1+1=(k+1)+1<k+1$ by induction, then $k+1<k$ for all positive integers k.

