Solutions for the Proof by Induction Exercises

1. $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$

Proof ${ }^{1}$:

- We first prove that the statement is true if $n=1$. In this case, statement becomes: $1=1(2) / 2$, which is true.
- We assume that the statement is true if $n=k$. That is,

$$
\sum_{i=1}^{k} i=\frac{k(k+1)}{2}
$$

- We show, using our assumption, that the statement must be true when $n=k+1$. That is,

$$
\sum_{i=1}^{k+1} i=\frac{(k+1)(k+2)}{2}
$$

We do that by starting with the LHS of the equation, then showing that we can get the RHS:

$$
\begin{array}{rlr}
\sum_{i=1}^{k+1} i & =\sum_{i=1}^{k} i+(k+1) & \text { Break apart the sum } \\
= & \frac{k(k+1)}{2}+(k+1) & \text { By assumption } \\
= & \frac{k(k+1)+2(k+1)}{2} & \\
& =\frac{(k+1)(k+2)}{2} & \text { QED }
\end{array}
$$

2. $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$

Proof:

- We first prove that the statement is true if $n=1$. In this case, statement becomes: $1^{2}=1(2)(3) / 6$, which is true.
- We assume that the statement is true if $n=k$. That is,

$$
\sum_{i=1}^{k} i^{2}=\frac{k(k+1)(2 k+1)}{6}
$$

[^0]- We show, using our assumption, that the statement must be true when $n=k+1$. That is,

$$
\sum_{i=1}^{k+1} i^{2}=\frac{(k+1)(k+2)(2 k+3)}{6}
$$

We do that by starting with the LHS of the equation, then showing that we can get the RHS:

\[

\]

3. $\sum_{i=1}^{n} 2^{i-1}=2^{n}-1$

Proof:

- We first prove that the statement is true if $n=1$. In this case, statement becomes: $2^{0}=2^{1}-1=1$, which is true.
- We assume that the statement is true if $n=k$. That is,

$$
\sum_{i=1}^{k} 2^{i-1}=2^{k}-1
$$

- We show, using our assumption, that the statement must be true when $n=k+1$. That is,

$$
\sum_{i=1}^{k+1} 2^{i-1}=2^{k+1}-1
$$

We do that by starting with the LHS of the equation, then showing that we can get the RHS:

$$
\begin{array}{rlr}
\sum_{i=1}^{k+1} 2^{i-1} & =\sum_{i=1}^{k} 2^{i-1}+2^{k} & \text { Break apart the sum } \\
& =2^{k}-1+2^{k} & \text { By assumption }
\end{array}
$$

$$
\begin{aligned}
& =2 \cdot 2^{k}-1 \\
& =2^{k+1}-1 \quad \text { QED }
\end{aligned}
$$

4. $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$

Proof:

- We first prove that the statement is true if $n=1$. In this case, statement becomes: $1^{3}=1^{2}\left(2^{2}\right) / 4$, which is true.
- We assume that the statement is true if $n=k$. That is,

$$
\sum_{i=1}^{k} i^{3}=\frac{k^{2}(k+1)^{2}}{4}
$$

- We show, using our assumption, that the statement must be true when $n=k+1$. That is,

$$
\sum_{i=1}^{k+1} i^{3}=\frac{(k+1)^{2}(k+2)^{2}}{4}
$$

We do that by starting with the LHS of the equation, then showing that we can get the RHS:

$$
\begin{array}{rll}
\sum_{i=1}^{k+1} i^{3} & =\sum_{i=1}^{k} i^{3}+(k+1)^{3} & \text { Break apart the sum } \\
= & \frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3} & \text { By assumption } \\
= & \frac{(k+1)^{2}\left(k^{2}+4 k+4\right)}{4} & \text { Factor out }(k+1)^{2} \\
& =\frac{(k+1)^{2}(k+2)^{2}}{4} & \text { QED }
\end{array}
$$

5. $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}$

Proof:

- We first prove that the statement is true if $n=1$. In this case, statement becomes: $1 / 2=1 / 2$, which is true.
- We assume that the statement is true if $n=k$. That is,

$$
\sum_{i=1}^{k} \frac{1}{i(i+1)}=\frac{k}{k+1}
$$

- We show, using our assumption, that the statement must be true when $n=k+1$. That is,

$$
\sum_{i=1}^{k+1} \frac{1}{i(i+1)}=\frac{k+1}{k+2}
$$

We do that by starting with the LHS of the equation, then showing that we can get the RHS:

$$
\begin{aligned}
& \sum_{i=1}^{k+1} \frac{1}{i(i+1)}=\sum_{i=1}^{k} \frac{1}{i(i+1)}+\frac{1}{(k+1)(k+2)} \text { Break apart the sum } \\
&=\frac{k}{k+1}+\frac{1}{(k+1)(k+2)} \quad \text { By assumption } \\
&=\frac{k(k+2)+1}{(k+1)(k+2)} \\
&=\frac{k^{2}+2 k+1}{(k+1)(k+2)}=\frac{k+1}{k+2} \text { QED }
\end{aligned}
$$

6. $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$

SOLUTION: This is a duplicate question (same as 5). Sorry!
7. $\sum_{i=1}^{n}(2 i-1)=n^{2}$

Proof:

- We first prove that the statement is true if $n=1$. In this case, statement becomes: $2(1)-1=1^{2}$, which is true.
- We assume that the statement is true if $n=k$. That is,

$$
\sum_{i=1}^{k}(2 i-1)=k^{2}
$$

- We show, using our assumption, that the statement must be true when $n=k+1$. That is,

$$
\sum_{i=1}^{k+1}(2 i-1)=(k+1)^{2}
$$

We do that by starting with the LHS of the equation, then showing that we can get the RHS:

$$
\sum_{i=1}^{k+1}(2 i-1)=\sum_{i=1}^{k}(2 i-1)+(2 k+1) \quad \text { Break apart the sum }
$$

$$
\begin{array}{cc}
=k^{2}+2 k+1 & \\
=(k+1)^{2} & \text { By assumption } \\
& \text { QED }
\end{array}
$$

8. $n!>2^{n}$ for $n \geq 4$.

Proof:

- We first prove that the statement is true if $n=4$. In this case, statement becomes: $4!=4(3)(2)(1)>(2 \cdot 2)(2 \cdot 2)$, which is true.
- We assume that the statement is true if $n=k$. That is, $k!>2^{k}$.
- We show, using our assumption, that the statement must be true when $n=k+1$. That is, we need to show that $(k+1)!>2^{k+1}$.
We do that by starting with the LHS of the equation, then showing that we can get the RHS:

$$
\begin{aligned}
(k+1)! & =k!(k+1) \quad \text { Break apart the sum } \\
& >2^{k}(k+1) \quad \text { By assumption } \\
\geq & 2^{k} \cdot 2=2^{k+1} \quad \text { QED }
\end{aligned}
$$

9. $2^{n+1}>n^{2}$ for all positive integers.

Proof:

- This one is a bit trickier than the others. Although we only need to check it in the case that $n=1$, let's check it for a few values of n :

n	2^{n+1}	n^{2}
1	$2^{2}=4$	$1^{2}=1$
2	$2^{3}=8$	$2^{2}=4$
3	$2^{4}=16$	$3^{2}=9$

So we see that not only is 2^{n+1} larger than n^{2}, the difference between them is growing. Now let's try the proof.

- We assume that the statement is true if $n=k$. That is, $2^{k+1}>k^{2}$.
- We show, using our assumption, that the statement must be true when $n=k+1$. That is, we need to show that $2^{k+2}>(k+1)^{2}$.

$$
\begin{aligned}
2^{k+2}= & 2^{k+1} \cdot 2 \\
& >2 k^{2} \quad \text { By assumption }
\end{aligned}
$$

We would be finished if we can assert that $2 k^{2}>(k+1)^{2}$, or that $2 k^{2}>k^{2}+2 k+1$, or equivalently,

$$
k^{2}-2 k-1>0
$$

The critical value here is where we have equality:

$$
k^{2}-2 k-1=0 \quad \Rightarrow \quad k=1 \pm \sqrt{2}
$$

For $k>1+\sqrt{2} \approx 2.14$, our statement is true. In particular, it is true when $k=3,4,5, \cdots$.
What about the smaller values of k ? We have shown that the statement is true for those cases by actual computation.
Therefore, the statement is true for all $n>0$.

[^0]: ${ }^{1}$ Q.E.D. is latin: quod erat demonstrandum, used to mean "which is what had to be proven" and signifies the end of a proof. Sometimes a box (\square) is employed for the same purpose.

