
Quiz 3 (Section A) Solutions
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SOLUTION: Use the Ratio Test.
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(The last step was using l’Hospital’s rule)

Therefore, the series converges (absolutely) by the Ratio Test.
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SOLUTION: As n→∞, the terms an go to±3/2 (so the limit does not exist). Therefore,
the series diverges by the Test for Divergence.
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SOLUTION: Use the Ratio Test.
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The limit is less than 1, so the series converges (absolutely) by the Ratio Test.

4.
∞∑
n=2

(−1)n−1√
n− 1

SOLUTION: First, we note that the series does not converge absolutely. To see this, we
can use the comparison test with

∑
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n, which is a divergent p−series.
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Therefore, by the direct comparison test, the series does not converge absolutely.

Now we can apply the Alternating Series Test for conditional convergence. Here, our
bn = 1/(

√
n− 1).

• bn is decreasing: Since
√
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• The limit of bn is zero:
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Therefore, by the Alternating Series Test, the series converges conditionally.
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