Quiz 3 (Section A) Solutions

SOLUTION: Use the Ratio Test.
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(The last step was using I'Hospital’s rule)
Therefore, the series converges (absolutely) by the Ratio Test.
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SOLUTION: As n — oo, the terms a,, go to £3/2 (so the limit does not exist). Therefore,
the series diverges by the Test for Divergence.
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SOLUTION: Use the Ratio Test.
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The limit is less than 1, so the series converges (absolutely) by the Ratio Test.
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SOLUTION: First, we note that the series does not converge absolutely. To see this, we
can use the comparison test with 3 1/4/n, which is a divergent p—series.
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Therefore, by the direct comparison test, the series does not converge absolutely.
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Now we can apply the Alternating Series Test for conditional convergence. Here, our

e b, is decreasing: Since vn+1—1> y/n — 1, then
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e The limit of b,, is zero:
0

. 1
lm —— =
n—00 n—1

Therefore, by the Alternating Series Test, the series converges conditionally.



