Quiz 3 (Section B) Solutions
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SOLUTION: Use the Ratio Test.
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(The last step was using I’'Hospital’s rule).
Therefore, the series converges (absolutely) by the Ratio Test.
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SOLUTION: As n — oo, the terms a,, go to £4/3 (so the limit does not exist). Therefore,
the series diverges by the Test for Divergence.
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SOLUTION: A direct comparison might be the fastest. In that case, you would note

that e/ < e! so that:
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and > 5 is a convergent p =series. Therefore, the series converges absolutely (by the
direct comparison test).

NOTE: The Ratio Test will give you inconclusive results (because it is so close to a

p—series).
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SOLUTION: First, is this absolutely convergent? No. We can use a comparison test
with 3 1/n:
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Therefore, the series (as a positive series) diverges by direct comparison.

Now we can use the Alternating Series Test. Here, b, = 1/In(n).

e [s the sequence b, decreasing? Yes, since
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e [s the limit of b, = 07 Yes: )
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Therefore, the series converges conditionally by the Alternating Series Test.



