INSTRUCTIONS: Whenever we evaluate a definite integral, assume the instructions say: "Evaluate the integral, **if it exists**". When evaluating an indefinite integral, you may assume that the function is continuous on its domain.

- 1. Set up an integral for the volume of the solid obtained by rotating the region defined by $y = \sqrt{x-1}$, y = 0 and x = 5 about the y-axis.
- 2. Write the area under $y = \sqrt[3]{x}$, $0 \le x \le 8$ as the limit of a Riemann sum (use right endpoints).
- 3. Find the volume of the solid obtained by rotating the region bounded by: $y = \frac{1}{x}$, y = 0, x = 1, x = 3 about y = -1.
- 4. The integral $\pi \int_2^5 y \, dy$ represented the volume of a solid. Describe the solid.
- 5. Write the appropriate partial fraction expansion for the following expression (do not solve for the constants):

$$\frac{1+x}{(x-1)^2(x^2+1)}$$

- 6. Let R be the region in the first quadrant bounded by y = x³ and y = 2x x². Calculate:
 (a) The area of R, (b) Volume obtained by rotating R about the x-axis (c) Volume obtained by rotating R about the y-axis
- 7. Determine a region whose area is equal to the following limit (do not evaluate the limit): $\lim_{n\to\infty}\sum_{i=1}^n\frac{3}{n}\sqrt{1+\frac{3i}{n}}$
- 8. What is the derivative of $\sin^{-1}(x)$? $\tan^{-1}(x)$? What are their antiderivatives?
- 9. What is the derivative of e^{-2x} ? The antiderivative of e^{-3x} ? Same questions for $\sin(3x)$.
- 10. Suppose you are integrating P(x)/Q(x), where P and Q are polynomials. Explain the process by which we integrate this expression. (Consider the degrees of P and Q).

- 11. What was the Mean Value Theorem for Integrals?
- 12. Evaluate: $\int_0^\infty t e^{-st} dt$, where s is a positive constant.
- 13. Write the following limit as a definite integral: on the given interval: $\lim_{n\to\infty}\sum_{i=1}^n\left(2+\frac{\pi i}{n}\right)\sin\left(\frac{2+\pi i}{n}\right)\cdot\frac{\pi}{n}.$
- 14. If $f(x) = 1 + x + x^2 + x^3 + \ldots = \sum_{n=0}^{\infty} x^n$,
 - (a) Find the interval on which the sum converges.
 - (b) Viewing this as a geometric series, what is the formula for f?
 - (c) Find f'(x) by differentiating the power series. If you also differentiate your answer to part (b), then you'll get a formula for the new power series.
 - (d) Find $\int f(x) dx$ by integrating the power series. What is the formula for the resulting sum (using the antiderivative of part (b))?
- 15. Find the area between the curves $y^2 = x$ and x 2y = 3.
- 16. Write the following difference as a single integral: $\int_{2}^{10} f(x) dx \int_{2}^{7} f(x) dx$
- 17. If $\int_0^1 f(x)dx = 2$, $\int_0^4 f(x)dx = -6$, and $\int_3^4 f(x) dx = 1$, find $\int_1^3 f(x) dx$.
- 18. If $\int_0^1 f(x) dx = \frac{1}{3}$, what is $\int_0^1 5 6f(x) dx$?
- 19. Compute $\frac{dF}{dx}$, if $F(x) = \int_x^2 \cos(t^2) dt$
- 20. Compute $\frac{dg}{dy}$, if $g(y) = \int_3^{\sqrt{y}} \frac{\cos(t)}{t} dt$.
- 21. Find $\frac{dy}{dx}$, if $y = \int_{\cos(x)}^{5x} \cos(t^2) dt$
- 22. If $a_n = \left(\frac{n+1}{n}\right)^n$, what is the limit of the sequence? Would the associated series converge?

23. Evaluate the limit by recognizing the sum as the Riemann sum to an associated integral:

$$\lim_{n \to \infty} \frac{1}{n} \left(\sqrt{\frac{1}{n}} + \sqrt{\frac{2}{n}} + \ldots + \sqrt{\frac{n}{n}} \right)$$

- 24. Write the following integral as the limit of a Riemann sum (use right endpoints): $\int_0^5 (1+2x^3) \ dx$
- 25. Given that $\int_4^9 \sqrt{x} dx = \frac{38}{3}$, what is $\int_9^4 \sqrt{t} dt$?
- 26. Let $f(x)=\mathrm{e}^x$ on the interval [0,2]. (a) Find the average value of f. (b) Find c such that $f_{\mathrm{avg}}=c$.
- 27. The velocity function is v(t) = 3t 5, $0 \le t \le 3$ (a) Find the displacement, (b) Find the distance traveled.
- 28. Exercise 7, pg. 427 (There are some graphs to consider).
- 29. Suppose h(1) = -2, h'(1) = 2, h''(1) = 3, h(2) = 6, h'(2) = 5, and h''(2) = 13, and h'' is continuous. Evaluate $\int_{1}^{2} h''(u) du$.
- 30. Find the area between the curves y = |x| and $y = x^2 2$.
- 31. If f is continuous and $\int_0^9 f(x) dx = 4$, find $\int_0^3 x f(x^2) dx$.
- 32. For each function, find the Taylor series for f(x) centered at the given value of a:
 - (a) $f(x) = 1 + x + x^2$ at a = 2
 - (b) $f(x) = e^x$ at a = 3.
 - (c) $f(x) = \frac{1}{x}$ at a = 1.
- 33. Problem 41, p. 439 (Pictures)
- 34. Find a so that half the area under the curve $y = \frac{1}{x^2}$ lies in the interval [1, a] and half of the area lies in the interval [a, 4].
- 35. Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by y = x, $y = 4x x^2$, about x = 7.

- 36. Compute:
 - (a) $\frac{d}{dx} \int_{3x}^{\sin(x)} t^3 dt$
 - (b) $\frac{d}{dx} \int_1^5 x^3 dx$
 - (c) $\int_{1}^{5} \frac{d}{dx} x^3 dx$
- 37. Define the integral of f:
 - (a) if f is continuous on [a, b] (as a Riemann Sum)
 - (b) On the interval [a,b] if f has a vertical asymptote at x=a, but is continuous on (a,b].
 - (c) On the interval $[a, \infty)$, if f is continuous there.
- 38. What is the difference between a sequence, a series, and a power series?
- 39. What does it mean for a infinite series to "converge"? Be specific in your answer using s_n as the sum for k = 1 to n.
- 40. What does it mean (graphically) for a sequence to "converge"?
- 41. If $a_n = \frac{n!}{(n+2)!}$, does the sequence converge? If so, to what does it converge?
- 42. If we think of a_n as f(n), then what is the relationship between $\sum_{n=1}^{T} a_n$ and $\int_1^T f(x) dx$? You may assume f is decreasing and positive. Hint: There are two possibilities, where you use either right endpoints or left endpoints in a Riemann sum.
- 43. The function f(x) is given as straight lines going through the points (0,1), (2,3), and (5,0). Compute $\int_0^5 f(x) dx$ using geometry.

Practice with Series: Converge (absolute or conditional) or Diverge?

1. $\sum_{n=1}^{\infty} \frac{n-1}{n^2+n}$

$$2. \sum_{n=1}^{\infty} \left(\frac{3n}{1+8n} \right)^n$$

3.
$$\sum_{n=1}^{\infty} \frac{10^n}{n!}$$

4.
$$\sum_{n=1}^{\infty} n^2 e^{-n^3}$$

5.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}-1}$$

6.
$$\sum_{k=1}^{\infty} \frac{k+5}{5^k}$$

7.
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{(n+1)(n+2)}$$

8.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^2 - 1}}{n^3 + 2n^2 + 5}$$

9.
$$\sum_{n=1}^{\infty} \frac{\cos(n/2)}{n^2 + 4n}$$

10.
$$\sum_{n=1}^{\infty} \frac{n^2+1}{5^n}$$

11.
$$\sum_{k=1}^{\infty} (-1)^k \frac{\sqrt{k}}{k+5}$$

12.
$$\sum_{n=1}^{\infty} \frac{(2n)^n}{n^{2n}}$$

13.
$$\sum_{n=1}^{\infty} \frac{3^n n^2}{n!}$$

14.
$$\sum_{k=1}^{\infty} k^{-1.7}$$

Practice with Power Series: Find the interval of convergence.

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^n}{n+1}$$

$$2. \sum_{n=1}^{\infty} \frac{x^n}{n^2}$$

$$3. \sum_{n=1}^{\infty} n^n x^n$$

4.
$$\sum_{n=1}^{\infty} \frac{n^2 x^n}{10^n}$$

5.
$$\sum_{n=1}^{\infty} \frac{(3x-2)^n}{n3^n}$$

6.
$$\sum_{n=1}^{\infty} n^3 (x-5)^n$$

7.
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n-1}}{(2n-1)!}$$

8.
$$\sum_{n=1}^{\infty} \frac{(4x+1)^n}{n^2}$$

9. Evaluate:

(a)
$$\int \frac{\sec^2(x)}{1 - \tan(x)} \, dx$$

(b)
$$\int_0^\infty \frac{1}{(x+2)(x+3)} \, dx$$

(c)
$$\int \ln(x) dx$$

(d)
$$\int \frac{dx}{x \ln(x)}$$

(e)
$$\int \frac{1}{y^2 - 4y - 12} \, dy$$

(f)
$$\int (1-t)(2+t^2) dt$$

(g)
$$\int u(\sqrt{u} + \sqrt[3]{u}) \ du$$

(h)
$$\int_{1}^{\infty} \frac{1}{(2x+1)^3} dx$$

(i)
$$\int_0^3 \frac{1}{\sqrt{x}} dx$$

(j)
$$\int_{1}^{4} \frac{e^{1/x}}{x^2} dx$$

(k)
$$\int e^{-x} \sin(2x) \, dx$$

(1)
$$\int \frac{x^2}{(4-x^2)^{3/2}} dx$$

(m)
$$\int \frac{1}{1 + e^x} dx$$

(n)
$$\int \frac{\tan^{-1}(x)}{1+x^2} dx$$

(o)
$$\int_{-a}^{a} x \sqrt{x^2 - a^2} \, dx$$

(p)
$$\int_0^2 \frac{dx}{(2x-3)^2} dx$$

(q)
$$\int \sin^2 x \cos^5 x \, dx$$

(r)
$$\int \frac{\sqrt{9x^2 - 4}}{x} \, dx$$

(s)
$$\int \frac{1}{\sqrt{x^2 - 4x}} \, dx$$

(t)
$$\int x^4 \ln(x) \ dx$$

(u)
$$\int \frac{2}{3x+1} + \frac{2x+3}{x^2+9} dx$$

(v)
$$\int x^2 \cos(3x) \, dx$$