
CALC II FINAL REVIEW SOLUTIONS

1. (6.2, 32) Set up an integral for the volume of the solid
obtained by rotating the region defined by y =

√
x− 1,

y = 0 and x = 5 about the y−axis.

V =

∫ 2

0

π(52 − (y2 + 1)2) dy

2. (5.1, 16) Write the area under y = 3√x, 0 ≤ x ≤ 8 as the
limit of a Riemann sum (use right endpoints).

∆x =
8

n
, Heighti =

3

√
8i

n
⇒ lim

n→∞

n∑
i=1

3

√
8i

n
·

8

n

3. (6.2, 14) Find the volume of the solid obtained by rotating
the region bounded by: y = 1

x
, y = 0, x = 1, x = 3 about

y = −1.

V =

∫ 3

1

π

[(
1

x
+ 1

)2

− 12

]
dx

4. (6.2, 40) The integral π
∫ 5

2
y dy represented the volume of

a solid. Describe the solid.

Rotate the region to the left of
√
y and to the right of the

y − axis about the y−axis (2 ≤ y ≤ 5).

5. Write the appropriate partial fraction expansion for the
following expression (do not solve for the constants):

1 + x

(x− 1)2(x2 + 1)
=

A

x− 1
+

B

(x− 1)2
+
Cx+D

x2 + 1

6. (Ch 6 Review, 16) Let R be the region in the first quadrant
bounded by y = x3 and y = 2x − x2. Calculate: (a) The
area of R (5/12) (b) Volume obtained by rotating R about
the x−axis (41π/105) (c) Volume obtained by rotating R
about the y−axis (13π/30), (d) The centroid of R.

7. (5.1, 18 ) Determine a region whose area is equal
to the following limit (do not evaluate the limit):

lim
n→∞

n∑
i=1

3

n

√
1 +

3i

n

The region is the area under the curve y =
√
x for 1 ≤ x ≤

4. You could also say that its under the curve y =
√

1 + x
for 0 ≤ x ≤ 3.

8. The derivative of sin−1(x) is 1√
1−x2

, the derivative of

tan−1(x) is 1
1+x2 . To obtain the antiderivatives, we need

to use integration by parts:∫
sin−1(x) dx = x sin−1(x)−

∫
x

√
1− x2

dx

so that ∫
sin−1(x) dx = x sin−1(x) +

√
1− x2

and ∫
tan−1(x) dx = x tan−1(x)−

∫
x

1 + x2
dx

so that∫
tan−1(x) dx = x tan−1(x)−

1

2
ln(1 + x2)

9. Recall that d
dx

ef(x) = f ′(x)ef(x), so the derivative of e−2x

is −2e−2x. The antiderivative is −1
2

e−2x. The derivative

of sin(3x) is 3 cos(3x), the antiderivative is − 1
3

cos(3x).

10. Suppose you are integrating P (x)/Q(x), where P and Q
are polynomials. Explain the process by which we inte-
grate this expression. (Consider the degrees of P and Q).
First, if the degree of P ≥ the degree of Q, perform long
division. We now can assume that the degree of P is less
than the degree of Q. Factor Q completely, and use partial
fractions.

11. What was the Mean Value Theorem for Integrals? The
same as the average value formula. If f is continuous on
the interval [a, b], then there is a c in the interval such
that:

f(c) =
1

b− a

∫ b

a

f(x) dx

12. Evaluate:
∫∞

0
te−st dt, where s is a positive constant.

Integration by parts (use a table) gives:

lim
T→∞

−t
s

e−st
∣∣∣T
0

+ lim
T→∞

−1

s2
e−st

∣∣∣T
0

Use L’Hospital’s rule to compute the limits to get that the
first term is 0, and the overall result is 1/s2.

13. Write the following limit as a definite integral: on the given

interval: lim
n→∞

n∑
i=1

(
2 +

πi

n

)
sin

(
2 +

πi

n

)
·
π

n
. (NOTE

THE MISPRINT)

We see, from the form
∑

f
(
a+ b−a

n
i
)
· b−a
n

, that a = 2,

f(x) = x sin(x), and so b− a is π. Therefore, the integral
is: ∫ 2+π

2

x sin(x) dx

14. If f(x) = 1 + x+ x2 + x3 + . . . =
∑∞

n=0
xn,

(a) Find the interval on which the sum converges.

This is a geometric series with r = x. Therefore, the
series converges absolutely if |x| < 1, and diverges if
x = 1 or x = −1.

(b) Viewing this as a geometric series, what is the for-
mula for f?

From the sum of a geometric series, f(x) = 1
1−x

(c) Find f ′(x) by differentiating the power series. If you
also differentiate your answer to part (b), then you’ll
get a formula for the new power series.

Differentiating the power series, we get:

f ′(x) =

∞∑
n=1

nxn−1

Differentiating part (b), we get:

f ′(x) =
−1

(1− x)2

so:

−1

(1− x)2
=

∞∑
n=1

nxn−1, |x| < 1

(d) Find
∫
f(x) dx by integrating the power series.

What is the formula for the resulting sum (using
the antiderivative of part (b))?

Similar to what we just did,∫
f(x) dx =

∞∑
n=0

1

n+ 1
xn+1 + C

and ∫
1

1− x
dx = ln |1− x|+ C
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Setting the two equal at x = 0, we see that the
constant is zero, so

ln |1− x| =
∞∑
n=0

xn+1

n+ 1

Side Note: From this formula, we can sum the al-
ternating harmonic series. That is, if x = −1,

ln(2) = ln |1− (−1)| =
∞∑
n=0

(−1)n+1

n+ 1
=

∞∑
n=1

(−1)n

n

15. (6.1, 17) Find the area between the curves y2 = x and
x− 2y = 3.

Taking horizontal rectangles (integrate with respect to y),
we see that the rightmost function is x − 2y = 3. The
points of intersection are (1,−1) and (9, 3). The area is:∫ 3

−1

(2y + 3)− y2 dy =
32

3

16. (5.2, 44) Write the following difference as a single integral:∫ 10

2
f(x) dx−

∫ 7

2
f(x) dx∫ 10

7

f(x) dx

17. (5.2, 46) If
∫ 1

0
f(x)dx = 2,

∫ 4

0
f(x)dx = −6, and∫ 4

3
f(x) dx = 1, find

∫ 3

1
f(x) dx. −6− 2− 1 = −9

18. (Similar to 5.2, 39) If
∫ 1

0
f(x) dx = 1

3
, what is

∫ 1

0
5 −

6f(x) dx? 5(1)− 6 1
3

= 5− 2 = 3.

19. (5.3, 9) Compute dF
dx

, if F (x) =
∫ 2

x
cos(t2) dt Note first

that
∫ 2

x
cos(t2)dt = −

∫ x
2

cos(t2) dt, which is now in stan-

dard form.
− cos(x2)

20. (5.3, 13) Compute dg
dy

, if g(y) =
∫ √y

3

cos(t)
t

dt.

cos(
√
y)

√
y
·

1

2
√
y

21. (5.3, 50) Find dy
dx

, if y =
∫ 5x

cos(x)
cos(t2) dt

First, in standard form, (0 was convenient, use any con-
stant):

y = −
∫ cos(x)

0

cos(t2) dt+

∫ 5x

0

cos(t2) dt

so the derivative is:

dy

dx
= cos(cos2(x)) · sin(x) + cos(25x2) · 5

22. (Section 4.4, L’Hospital) If an =
(
n+1
n

)n
, then

an = en ln((n+1)/n)

so we’ll take the limit of the exponent:

lim
n→∞

n ln((n+ 1)/n) = lim
n→∞

ln((n+ 1)/n)

1/n
=

lim
n→∞

ln(n+ 1)− ln(n)

1/n
= lim
n→∞

1
n+1
− 1
n

−1/n2
=

lim
n→∞

n2

n(n+ 1)
= 1

so overall, lim
n→∞

an = e1 = e Thus, the series converges to

e.

If we were considering
∑∞

n=1
an, then the divergence test

would say that this sum diverges.

23. (5.3, 58) Evaluate the limit by recognizing the sum as a
Riemann sum:

lim
n→∞

1

n

(√
1

n
+

√
2

n
+ . . .+

√
n

n

)
∫ 4

1

1
√
x
dx = 2

24. (5.2, 22) Write the following integral as the limit of a Rie-

mann sum (use right endpoints):

∫ 5

0

(1 + 2x3) dx

lim
n→∞

∑
i = 1n

(
1 +

(
5i

n

)3
)

5

n

25. (5.2, 37) Given that
∫ 9

4

√
x dx = 38

3
, what is

∫ 4

9

√
t dt?

−38/3

26. (6.5, 10) Let f(x) = ex on the interval [0, 2]. (a) Find the
average value of f . (b) Find c such that favg = f(c).

favg =
1

2

∫ 2

0

ex dx =
1

2
(e2 − 1)

ec =
e2 − 1

2
⇒ c = ln

(
e2 − 1

2

)
27. (5.4, 53) The velocity function is v(t) = 3t − 5, 0 ≤ t ≤ 3

(a) Find the displacement, (b) Find the distance travelled.

Displacement is
∫ 3

0
3t− 5 dt = −3/2 Distance is

∫ 3

0
|3t−

5| dt =
∫ 5/3

0
−3t+ 5 dt+

∫ 3

5/3
3t− 5 dt = 25

6
+ 8

3
= 41

6

28. Exercise 7, pg. 427 (There are some graphs to consider).
See the back of the book.

29. (Ch 5 Review, 68) Suppose h(1) = −2, h′(1) = 2, h′′(1) =
3, h(2) = 6, h′(2) = 5, and h′′(2) = 13, and h′′ is contin-

uous. Evaluate
∫ 2

1
h′′(u) du. h′(2)− h′(1) = 5− 2 = 3.

30. (6.1, 24) Find the area between the curves y = |x| and
y = x2 − 2.∫ 2

−2

|x| − (x2 − 2) dx = 2

∫ 2

0

x− (x2 − 2) dx =
20

3

31. ( 5.5, 78) If f is continuous and
∫ 9

0
f(x) dx = 4, find∫ 3

0
xf(x2) dx. Let u = x2, so du = 2x dx Then:∫ 3

0

xf(x2) dx =
1

2

∫ 9

0

f(u) du = 2.

32. For each function, find the Taylor series for f(x) centered
at the given value of a:

(a) f(x) = 1 + x+ x2 at a = 2

We need to compute f(2), f ′(2), f ′′(2), which are
7, 5, 2 respectively. Now,

f(x) = 7 + 5(x− 2) +
2

2
(x− 2)2

You can check that this simplifies to the original.

(b) f(x) = ex at a = 3.

We need to compute f(3), f ′(3), f ′′(3), . . .. Since the
derivative of ex is ex, f (n)(3) = e3 for all n, and:

ex =

∞∑
n=0

e3

n!
(x− 3)n

2



(c) f(x) = 1
x

at a = 1.

We start computing derivatives:

f(x) = x−1, f ′(x) = −x−2, f ′′(x) = 2x−3,

f ′′′(x) = −3 · 2x−4, f (iv)(x) = 4 · 3 · 2x−5

so the formula is: f (n)(x) = (−1)nn!x−(n+1) ⇒
f (n)(1) = (−1)nn! Therefore, we have the Taylor
expansion:

1

x
=

∞∑
n=0

(−1)nn!

n!
(x− 1)n =

∞∑
n=0

(−1)n(x− 1)n

which we can see immediately is valid for |x − 1| <
1 ⇒ 0 < x < 2, which we might expect since 1

x
is

not defined at x = 0.

33. Problem 41, p. 439 (see the book).

34. (6.1, 46(a)) Find a so that half the area under the curve
y = 1

x2 lies in the interval [1, a] and half of the area lies in

the interval [a, 4].∫ 4

1

1

x2
dx = 2

∫ a

1

1

x2
dx

1−
1

4
= 2−

2

a
⇒ a =

8

5

35. (6.3, 22) Set up, but do not evaluate, an integral for
the volume of the solid obtained by rotating the region
bounded by y = x, y = 4x− x2, about x = 7. (Shells)∫ 3

0

2π(7− x)((4x− x2)− x) dx

36. Compute:

(a)
d

dx

∫ sin(x)

3x

t3 dt

This is the Fundamental Theorem of Calculus, Part
I. Note that we can write this as:

−
∫ 3x

0

t3 dt+

∫ sin(x)

0

t3 dt

choosing zero at random. This can also be further
written as:

−g(3x) + g(sin(x))

where g(x) =

∫ x

0

t3 dt, and g′(x) = x3. Now, the

derivative is found via the chain rule:

−g′(3x) · 3 + g′(sin(x)) · cos(x)

which gives:

−(3x)3 ·3+(sin(x))3 cos(x) = −81x3+sin3(x) cos(x)

(b)
d

dx

∫ 5

1

x3 dx

The derivative is zero- we’re differentiating a con-
stant.

(c)

∫ 5

1

d

dx
x3 dx

This will be

∫ 5

1

3x2 dx = x3
∣∣5
1

= 53 − 1 = 124

37. Define the integral of f :

(a) if f is continuous on [a, b] (as a Riemann Sum)∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(a+i((b−a)/n))·(b−a)/n

(b) On the interval [a, b] if f has a vertical asymptote
at x = a, but is continuous on (a, b].∫ b

a

f(x) dx = lim
T→a+

∫ b

T

f(x) dx

if this limit exists.

(c) On the interval [a,∞), if f is continuous there.∫ ∞
a

f(x) dx = lim
T→∞

∫ T

a

f(x) dx

if this limit exists.

38. What is the difference between a sequence, a series, and a
power series?

A sequence is a listing of numbers, a series is a sum of
numbers, and a power series is a function. Our notation
changes from an to

∑
an to

∑
cn(x− a)n

39. What does it mean for a infinite series to ”converge”? Be
specific in your answer using sn as the sum for k = 1 to
n.

Let sn =
∑n

k=1
ak. Then the infinite series is said to

converge if the limn→∞ sn exists. Note that we never use
this to prove that a series converges- we have our tests on
ak for that... In that sense, this is a theoretical, rather
than practical, result.

40. What does it mean (graphically) for a sequence to ”con-
verge”?

The set of plotted points, (n, an) converges if there is a
horizontal asymptote.

41. If an = n!
(n+2)!

, does the sequence converge? If so, to what

does it converge?

The sequence does converge: an = 1
(n+1)(n+2)

, so the

limit as n→∞ is zero.

42. If we think of an as f(n), then what is the relationship

between
∑T

n=1
an and

∫ T
1
f(x) dx? You may assume f is

decreasing and positive. Hint: There are two possibilities,
where you use either right endpoints or left endpoints in
a Riemann sum.

By using right endpoints,

T∑
n=2

an <

∫ T

1

f(x) dx

By using left endpoints,

T−1∑
n=1

an >

∫ T

1

f(x) dx

43. The function f(x) is given as straight lines going through

the points (0, 1), (2, 3), and (5, 0). Compute
∫ 5

0
f(x) dx

using geometry.

One way is to use a rectangle and two triangles:

(1)(2) +
1

2
(2)(2) +

1

2
(3)(3) =

17

2

SERIES solutions
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1.

∞∑
n=1

n− 1

n2 + n

We see that this series is a lot like
∑

1
n

, which diverges.
We use the limit comparison test:

lim
n→∞

n− 1

n2 + n
·
n

1
= lim
n→∞

n2 − n
n2 + n

= lim
n→∞

1− 1
n

1 + 1
n

= 1

Therefore, the series will diverge by the limit comparison
test with the harmonic series.

2.

∞∑
n=1

(
3n

1 + 8n

)n
Use the root test:

lim
n→∞

n

√(
3n

1 + 8n

)n
= lim
n→∞

3n

1 + 8n
=

3

8

The series converges (absolutely) by the root test with the
limit of 3

8
< 1.

3.

∞∑
n=1

10n

n!

Use the ratio test:

lim
n→∞

10n+1

(n+ 1)!
·
n!

10n
= lim
n→∞

10

n+ 1
= 0

The series converges (absolutely) by the ratio test with
the limit 0 < 1.

4.

∞∑
n=1

n2e−n
3

This looks set up for the integral test:∫ ∞
1

x2e−x
3
dx

with u = x3, du = 2x2 dx, we get:

1

2

∫
e−u du = −

1

2
e−x

3
∣∣∣T
1

= −
1

2

(
e−T

3
− e−1

)
and the limit as T → ∞ is 1

2
e−1. Therefore, the inte-

gral converges, so the associated series will also converge
(absolutely).

5.

∞∑
n=1

(−1)n−1

√
n− 1

We see that this is not going to be absolutely convergent
(formally, we can do a limit comparison with the p−series

1√
n

. We will check for conditional convergence via the Al-

ternating Series Test. We need to show that the sequence
of terms is decreasing:

f(x) =
1

√
x− 1

⇒ f ′(x) =
−1

(
√
x− 1)2

·
1

2
√
x

so the derivative is negative for x > 0. We also see that:

lim
n→∞

1
√
n− 1

= 0

so this series converges (conditionally) by the Alternating
Series Test.

6.

∞∑
k=1

k + 5

5k

Using the ratio test:

lim
k→∞

(k + 1) + 5

5n+1
·

5n

k + 5
= lim
k→∞

k + 6

5n+1
·

5n

k + 5
=

lim
k→∞

1

5
·
k + 6

k + 5
=

1

5

7.

∞∑
n=1

(−1)nn

(n+ 1)(n+ 2)

Intuitively, this series will behave like the alternating har-

monic series
∑ (−1)n

n
. Let’s check:

We will show that the series of positive terms will diverge
by using the limit comparison with

∑
1
n

:

lim
n→∞

n

(n+ 1)(n+ 2)
·
n

1
= 1

Now we need to show the series satisfies the hypotheses of
the Alternating Series Test. First, we show the sequence of
positive terms is decreasing, then the limit of those terms
is zero:

f(x) =
x

(x+ 1)(x+ 2)
⇒ f ′(x) =

−x2 + 4x+ 2

((x+ 1)(x+ 2))2

The numerator is going to negative infinity as x→∞, and
the denominator is always positive. Therefore, for x large
enough, f ′(x) will always be negative. Specifically, that
value of x can be found by using the quadratic formula:

x =
−4±

√
16 + 8

−2
≈ 2± 2.45

so for x > 5 (next integer up) , f ′(x) < 0. We also have
that:

lim
n→∞

n

n2 + 3n+ 2
= lim
n→∞

1

n+ 3 + (2/n)
= 0

By the Alternating Series Test, the series will converge
(conditionally).

8.

∞∑
n=1

√
n2 − 1

n3 + 2n2 + 5

This series will behave like
√
n2/n3 = 1/n2, so we expect

convergence. We’ll use the limit comparison test:

lim
n→∞

√
n2 − 1

n3 + 2n2 + 5
·
n2

1
= lim
n→∞

n2
√
n2 − 1

n3 + 2n2 + 5
=

lim
n→∞

(n2
√
n2 − 1)/n3

(n3 + 2n2 + 5)/n3
= lim
n→∞

√
n2−1
n

1 + 2
n

+ 5
n3

=

lim
n→∞

√
n2−1
n2

1 + 2
n

+ 5
n3

= lim
n→∞

√
1− 1

n2

1 + 2
n

+ 5
n3

= 1

This shows that indeed, the unknown series converges like∑
1
n2 . Thus, by the Limit Comparison Test, the given

series converges (absolutely).

9.

∞∑
n=1

cos(n/2)

n2 + 4n

We see that | cos(n/2)| < 1 for all n. Therefore, we can
directly compare this series to

∑
1

n2+4n
, which we can

show is convergent by the Limit Comparison:

lim
n→∞

1

n2 + 4n
·
n2

1
= 1

Therefore, by the Direct Comparison Test, the unknown
series converges absolutely (and is therefore convergent).

You could have done the Direct Comparison this way as
well:

| cos(n/2)|
n2 + 4n

≤
1

n2 + 4n
≤

1

n2

The last inequality follows because if you reduce the size
of the denominator, you increase the size of the fraction
(like the difference between 1/10 and 1/2).
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10.

∞∑
n=1

n2 + 1

5n

Probably easiest to use the Ratio Test:

lim
n→∞

(n+ 1)2 + 1

5n+1
·

5n

n2 + 1
= lim
n→∞

1

5
·

(n+ 1)2 + 1

n2 + 1
=

lim
n→∞

1

5
·
n2 + 2n+ 2

n2 + 1
=

lim
n→∞

1

5
·

1 + 2
n

+ 2
n2

1 + 1
n2

=
1

5

The series converges (absolutely) by the Ratio Test, where
the limit was 1

5
< 1.

11.

∞∑
k=1

(−1)k
√
k

k + 5

We see that the series will not converge absolutely, since
the terms go to zero like 1√

k
, which is a p−series with

p < 1. Therefore, we go directly to the Alternating Series
Test to see if we get conditional convergence.

First, check that the (positive) terms of the series are de-
creasing.

f(x) =

√
x

x+ 5
⇒ f ′(x) =

1
2
√
x

(x+ 5)−
√
x

(x+ 5)2

which simplifies to:

f ′(x) =
−x+ 5

2
√
x(x+ 5)2

The denominator is always positive for x > 0, so the only
thing determining the sign of f ′ is the numerator, which
is negative if x > 5.

Now, limn→∞
√
n

n+5
= limn→∞

1√
n+ 5√

n

= 0, so by the

Alternating Series Test, the series will converge (but only
conditionally).

12.

∞∑
n=1

(2n)n

n2n

This one is ripe for the Root Test:

lim
n→∞

n

√(
2n

n2

)n
= lim
n→∞

2n

n2
= lim
n→∞

2

n
= 0

By the Root Test with a limit of 0 < 1, the series will
converge (absolutely).

13.

∞∑
n=1

3nn2

n!

Whenever we see an n!, we almost always want to use the
Ratio Test, and this is no exception:

lim
n→∞

3n+1(n+ 1)2

(n+ 1)!
·
n!

3nn2
= lim
n→∞

3 · (n+ 1)2

(n+ 1)n2
=

lim
n→∞

3 ·
n+ 1

n2
= 0

By the Ratio Test with a limit of 0 < 1, the series will
converge (absolutely).

14.

∞∑
k=1

k−1.7

Note that:

k−1.7 =
1

k1.7
=

(
1

k

)1.7

so this is a p−series with p > 1. Therefore, the series will
converge (absolutely).

Power Series Solutions

1.

∞∑
n=1

(−1)nxn

n+ 1

We’ll use the Ratio Test to check for convergence:

lim
n→∞

∣∣∣∣ xn+1

n+ 2

∣∣∣∣ · ∣∣∣n+ 1

xn

∣∣∣ = lim
n→∞

|x| ·
n+ 1

n+ 2
= |x|

The series will converge absolutely when |x| < 1 by the
Ratio Test. If x = 1, the series will be:

∞∑
n=1

(−1)n

n+ 1

which is an Alternating Harmonic Series (converges condi-
tionally). We essentially get the same thing if x = −1; the
series is multiplied by −1. Our conclusion is that the series
will converge if −1 ≤ x ≤ 1 (so the Radius of Convergence
is also 1).

2.

∞∑
n=1

xn

n2

We’ll take the same route as we did previously with the
Ratio Test:

lim
n→∞

∣∣∣∣ xn+1

(n+ 1)2

∣∣∣∣ · ∣∣∣∣n2

xn

∣∣∣∣ = lim
n→∞

|x| ·
(
n+ 1

n

)2

= |x|

And check the endpoints: In either case, (in absolute
value) the terms will be 1/n2, which converges by the
p−series.

The series will converge for −1 ≤ x ≤ 1.

3.

∞∑
n=1

nnxn

This one is set up for the Root Test:

lim
n→∞

n
√
|(nx)n| = lim

n→∞
n|x|

This term goes to infinity for all x 6= 0, so the only value
of x for which this series will converge is x = 0.

4.

∞∑
n=1

n2xn

10n

There are some choices with this one, we’ll go through two
of them:

(a) Use the Root Test:

lim
n→∞

n

√∣∣∣n2xn

10n

∣∣∣ = lim
n→∞

n2/n |x|
10

We can take the limit of n2/n separately:

lim
n→∞

n2/n = lim
n→∞

e
2
n

ln(n)

Now,

lim
n→∞

2 ln(n)

n
= lim
n→∞

2
n

1
= 0

so overall, n2/n → e0 = 1.

Thus, the overall limit from the Root Test is
|x|
10

, so |x| <
10. If x = 10, the original series becomes

∑
n2 which

diverges (same if x = −10). So in this case, −10 < x < 10.

(b) Use the Ratio Test:

lim
n→∞

(n+ 1)2|xn+1|
10n+1

·
10n

n2|xn|

5



which simplifies to:

lim
n→∞

|x|
10

(
n+ 1

n

)2

=
|x|
10

so again we get that |x| < 10, and we already considered
the cases where x = 10, x = −10, so the final answer is
that the series converges for −10 < x < 10.

5.

∞∑
n=1

(3x− 2)n

n3n

Use the Ratio Test:

lim
n→∞

|3x− 2|n+1

(n+ 1)3n+1
·

n3n

|3x− 2|n
=

lim
n→∞

|3x− 2|
3

·
(

n

n+ 1

)
=
|3x− 2|

3

For convergence, |3x− 2| < 3 or

3x− 2 < 3⇒ 3x < 5⇒ x < 5/3

and
−3x+ 2 < 3⇒ 3x > −1⇒ x > −1/3

If x = 5/3, the series becomes
∑

1
n

, which diverges, and

if x = −1/3, the series becomes
∑

(−1)n 1
n

, which con-
verges.

The interval on which the series converges is: −1
3
≤ x < 5

3
.

6.

∞∑
n=1

n3(x− 5)n

By the Ratio Test:

lim
n→∞

(n+ 1)3|x− 5|n+1

n3|x− 5|n
= |x− 5|

so 4 < x < 6. If x = 4, the series becomes
∑

(−1)nn3,

which diverges, and if x = 6, the series becomes
∑

n3

which diverges. The interval for which the series will con-
verge is:

4 < x < 6

7.

∞∑
n=1

(−1)nx2n−1

(2n− 1)!

By the Ratio Test:

lim
n→∞

|x|2(n+1)−1

(2(n+ 1)− 1)!
·
(2n− 1)!

|x|2n−1
= lim
n→∞

|x|2

(2n)(2n+ 1)
= 0

for all x. This series converges for all x.

8.

∞∑
n=1

(4x+ 1)n

n2

By the Ratio Test:

lim
n→∞

|4x+ 1|n+1

(n+ 1)2
·

n2

|4x+ 1|n
=

lim
n→∞

|4x− 1| ·
(

n

n+ 1

)2

= |4x− 1|

so |4x − 1| < 1 ⇒ −1
2

< x < 1
2

. If x = −1/2, the

sum becomes
∑ (−1)n

n2 , which converges absolutely by the

p−series, and if x = 1
2

,
∑

1
n2 converges absolutely. In this

case, −1
2
≤ x ≤ 1

2
.

9. Evaluate:

(a) (Ch 7 Review, 4)

∫
sec2(x)

1− tan(x)
dx Let u = tan(x).

− ln |1− tan(x)|+ C

(b)

∫ ∞
0

1

(x+ 2)(x+ 3)
dx

Using partial fractions, the integral is:∫
1

x+ 2
−

1

x+ 3
dx

so ln |x+ 2| − ln |x+ 3| = ln
∣∣x+2
x+3

∣∣+ C

(c)

∫
ln(x) dx Integration by parts with u = ln(x),

dv = dx:
x ln |x| − x+ C

(d) ( 5.5, 31)

∫
dx

x ln(x)
Let u = ln(x), so ln | ln |x||+C

(e) (Ch 7 Review, 6)

∫
1

y2 − 4y − 12
dy Use partial

fractions to get 1
8

ln |y − 6| − 1
8

ln |y + 2|+ C

(f) (5.4, 9)

∫
(1− t)(2+ t2) dt Multiply it out, 2t− t2 +

1
3
t3 − 1

4
t4 + C

(g) (5.4, 25)

∫
u(
√
u + 3√u) du Simplify before inte-

grating. 2
5
u5/2 + 3

7
u7/3 + C

(h) (Ch 7 Review, 33)

∫ ∞
1

1

(2x+ 1)3
dx 1/36.

(i)

∫ 3

0

1
√
x
dx

We’ll need a limit:

lim
T→0+

2x1/2
∣∣3
T

= 2
√

3

(j) (Ch 7 Review, 36 )

∫ 4

1

e1/x

x2
dx Let u = 1/x and

substitute. e− e1/4

(k)

∫
e−x sin(2x) dx

Integration by parts twice so that:∫
e−x sin(2x) dx =

e−x
(−1

2
cos(2x)−

1

4
cos(2x)

)
−

1

4

∫
e−x sin(2x) dx

Add the integral back to the left hand side to get a
final answer of

e−x
(
−

2

5
cos(2x)−

1

5
sin(2x)

)
+ C

(l) (Ch 7 Review, 29)

∫
x2

(4− x2)3/2
dx Let x =

2 sin(θ) and substitute.

x
√

4− x2
− sin−1(x/2) + C

(m) (Ch 7 Review, 26 )

∫
1

1 + ex
dx Let u = ex, so

ln(u) = x and (1/u)du = dx and substitute. You
will then need to do partial fractions, and get:

x− ln(1 + ex) + C
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(n) (5.5, 22)

∫
tan−1(x)

1 + x2
dx Let u = tan−1(x).

1
2

(tan−1(x))2 + C

(o) (5.5, 70)

∫ a

−a
x
√
x2 − a2 dx You should get 0.

(p) (5.5, 56 (+section 7.8))

∫ 2

0

dx

(2x− 3)2
dx Does not

exist (take the limit as T → 3
2

).

(q) (Ch 7 Review, 13)

∫
sin2 x cos5 x dx Pull out a

cos(x) to keep with dx.

1

3
sin3(x)−

2

5
sin5(x) +

1

7
sin7(x) + C

(r)

∫ √
9x2 − 4

x
dx

Let 3x = 2 sec(θ), so
√

9x2 − 4 = 2 tan(θ), and dx =
(2/3) sec(θ) tan(θ)dθ. Substituting and simplifying,
we get

2

∫
tan2(θ) d(θ) = 2

∫
sec2(θ)− 1 d(θ)

which is 2 tan(θ) − 2θ + C. Converting back to x
using a triangle (hyp=3x, adj=2, opp=

√
9x2 − 4)√

9x2 − 4− 2 cos−1(
2

3x
) + C

(You could have had sec−1(3x/2) in the last term,
too).

(s) (Ch 7 Review, 19)

∫
1

√
x2 − 4x

dx First complete

the square then substitute x − 2 = sec(θ). You

should end up with
∫

sec(θ) dθ, which will be given
on the exam... Be sure you can go back to x.

(t) (Ch 7 Review, 5)

∫
x4 ln(x) dx Integrate by parts

with u = ln(x), dv = x4 dx.

1

5
x5 ln(x)−

1

25
x5 + C

(u)

∫
2

3x+ 1
+

2x+ 3

x2 + 9
dx Split into 3 integrals:∫

2

3x+ 1
dx =

2

3
ln |3x+ 1|+ C

Next one, use u = x2 + 9∫
2x

x2 + 9
dx = ln(x2 + 9)

Next one, use the table∫
3

x2 + 9
dx = tan−1(x/3)

Final answer: Sum them together and add C.

(v)

∫
x2 cos(3x) dx Straight integration by parts

(Grouped to save space)(
x2

3
−

2

27

)
sin(3x) +

2x

9
cos(3x)
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