
Summary: Chapter 11

1. THE BIG PICTURE: Understand that functions (see note below) can be expressed as a polynomial:

f(x) = a0 + a1(x− a) + a2(x− a)2 + . . . =
∞∑
n=0

an(x− a)n

(Note: Not all functions can be expressed this way, we’ll discuss the technical details in class)

2. Towards this goal, we broke this big problem into several concepts which evolved in the following way:

SEQUENCES→ SERIES→ POWER SERIES or {an}∞n=1 →
∞∑
n=1

an →
∞∑
n=1

Expression in n, x

With the main questions evolving:

What does it mean to take the limit of an? → What does it mean to take an infinite sum? → For what
values of x will we get a meaningful infinite sum?

3. To guide our intuition, we set up some guideposts- some templates by which we will try to understand
more complex examples:

• Template Sequence: an = rn Converges to 0 if |r| < 1 (Otherwise, divergent)

• Template Series:

– The Geometric Series:
∞∑
n=k

arn If |r| < 1, converges to

First Term
1− Ratio

=
ark

1− r

– The P−series:
∑ 1

np
converges if p > 1

(Compare with Ch. 7.8, f(x) = (1/x)p).
∗ The Harmonic Series:

∑
1
n diverges.

∗ The Alternating Harmonic Series
∑

(−1)n 1
n converges conditionally.

Unlike the Geometric Series, we don’t have a nice formula by which we can compute the actual
sum to which these series will converge. We can estimate the sum (won’t be tested), or we can
use an associated Power Series.

• Template Power Series:

– Exponential: ex = 1 + x
1 + x2

2! + x3

3! + . . .

– Geo-style: 1
1−x =

∑∞
n=0 x

n (if |x| < 1)

4. Answering the big issues:

(a) Take the limit of an: We saw that we can connect the sequence an to the function f(n). All the
methods we had in Chapters 2 and 4 can now be applied to find a “horizontal asymptote” for the
sequence. We added the template sequence rn.

(b) What does it mean to take an infinite sum?

i. If sn =
∑n
i=1 ai, then we define

∑∞
i=1 ai as the limit of sn. If the limit exists, we say that∑∞

i=1 ai converges. Otherwise, the sum diverges.
ii. Connection to Sequences: (The Divergence Test) If we are considering

∑
an, and an does not

go to zero, the sum diverges. On the other hand, if an → 0, the sum may or may not converge.
This is why we now bring up the convergence tests.
CONVERGENCE TESTS answer the question: How fast do the terms of the series go to zero?
This takes the bulk of Chapter 11, so we’ll address this in detail in the next section.
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(c) Conditional v. Absolute Convergence:
Absolute convergence is a beautiful thing: It says that the infinite series behaves like a finite sum-
rearrangements of the terms do not effect the final outcome.
Conditional convergence is a monstrosity! Through an appropriate rearrangement of the terms of
the sum, the sum will converge to ANY real number!!
If a series is absolutely convergent, then it is convergent.

(d) Find x so that the power series converges. This is an abstraction of a regular series, in that we
introduce a new variable x. The idea is that, whenever we replace x by an actual number, the
result is a regular series. Thus, to say that a power series converges means that, by substituting
the proper values of x, the corresponding series converges. So, all our convergence tests will apply
to these problems.

(e) The final question: Find the coefficients so that f(x) can be expressed as a power series (the Taylor
series). At a base point, x = a, we can write f(x) as:

f(x) =
∞∑
n=1

f (n)(a)
n!

(x− a)n

Implicit in this formula is that we can take all derivatives of f . An interesting question is whether
or not we can always do this (even when the derivatives all exist). It turns out that we could have
problems- although the functions we consider will all be OK. Since we have this problem, we can
use a new vocabulary term: A function is said to be analytic if it can be represented by it’s Taylor
series.
Note the special cases:

• f(x) ≈ f(a) (a constant)
• f(x) ≈ f(a) + f ′(a)(x− a) The linearization of f at x = a

• f(x) ≈ f(a) + f ′(a)(x − 1) + f ′′(a)
2 (x − a)2 A quadratic approximation of f at x = a (Fits a

parabola to f)
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Understanding the Convergence Tests:

First and foremost, check that the terms an → 0. If not, we’re done (the series diverges). If so, the
series may or may not converge. Note that we will only be interested in the convergence question- actually
computing the sum to which the series will converge is a more complicated question (with the exception of
the Geometric Series or a Power Series).

If the terms of the series go to zero, we check for absolute convergence first- which means that we’ll treat
our series as a positive series:

TESTS FOR POSITIVE SERIES:

The main issue here is HOW FAST DO OUR TERMS GO TO ZERO?

1. Direct comparison of unknown series
∑
bn with a known series

∑
an.

(a) If bn ≤ an for all n and
∑
an converges, so does bn (The terms in

∑
bn go to zero faster than our

known series).
If bn ≥ an for all n and

∑
an diverges, so does bn (The terms in

∑
bn go to zero slower than our

known series).

(b) COMMENTS: This method requires a delicate touch! It’s probably better to use the Limit Com-
parison, next.

2. The Limit Comparison of unknown series
∑
bn with a known series

∑
an. This uses the following idea-

I’d like for you to understand what’s happening, rather than memorizing all of the cases!

• If lim
n→∞

bn
an

= c, where c > 0 and c is finite, we say that an and bn go to zero at the same rate.

Thus, the corresponding series will converge or diverge together.

• If lim
n→∞

bn
an

= 0, this means that bn is going to zero faster than an. If the series for an converges, so

will the series for bn. If the series for an diverges, we can say nothing about
∑
bn.

• If lim
n→∞

bn
an

= ∞, this means that an is going to zero faster than bn. If the series for an converges,

we can say nothing about
∑
bn. If the series for an diverges, so does the series for bn.

• COMMENT: This method is much more robust to approximation than the direct comparison- It
is a favorite!! The main issue in using this is that we need a template series to do the comparisons.

3. The Integral Test: Here is where we formally connect the concept of an infinite sum to an improper
integral (Ch 7.8). That is, the following two quantities converge or diverge together (if f is positive and
decreasing): ∫ ∞

1

f(x) dx and
∞∑
n=1

an, with an = f(n)

COMMENT: Nice idea, and very useful if an looks like a function that we can integrate (but this is
usually not the case). In the previous methods (Direct and Limit Comparison) we needed a known series
to do the comparing, but not in this case.

4. Self Comparison 1: The Ratio Test

If lim
n→∞

an+1

an
= L < 1, we say that the series

∑
an converges like a geometric series with ratio L.

If lim
n→∞

an+1

an
= L > 1, we say that the series

∑
an diverges.

If lim
n→∞

an+1

an
= 1, the test fails (we cannot conclude anything).
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5. Self Comparison 2: The Root Test

If lim
n→∞

n
√
an = L < 1, we say that the series

∑
an converges like a geometric series with ratio L.

If lim
n→∞

n
√
an = L > 1, we say that the series

∑
an diverges.

If lim
n→∞

n
√
an = 1, the test fails (we cannot conclude anything).

COMMENTS ON RATIO and ROOT TESTS:

Using the Ratio and Root Tests on a series whose terms go to zero like the terms of a p−series will both
fail. The root test is really only used when you have a complicated expression being raised to an nth

power. The Ratio Test works well with things involving n!.

Alternating Series Test:

If the absolute value of the terms are decreasing to zero, and the terms are alternating in sign, then the
infinite sum will converge.

Other Methods and Algebra:

1. To find a limit of a sequence, we have the following choices:

• Put it into the form arn. It goes to zero if |r| < 1.

• Divide numerator and denominator by n raised to a power.

• Rationalize: Given something like “√ − something”, multiply by the fraction
√

+something
√

+something

• L’Hospital’s Rule (A favorite!). You must have a form 0
0 or ±∞±∞

– f(x)g(x) can be written as f(x)
1/g(x)

– f(x)g(x) can be written as eg(x) ln(f(x))
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