Take Home Quiz Solutions

1. Assigned April 3:

(a) Begin with a triangle, with an angle θ whose length of the side opposite is x, the hypotenuse is 1, and the length of the adjacent side is $\sqrt{1-x^2}$. Then we have:

$$\sin(\theta) = x \quad \cos(\theta) = \sqrt{1 - x^2}, \quad \cos(\theta) d\theta = dx$$

and if $x = 0, \theta = 0$, if $x = \frac{1}{\sqrt{2}}, \theta = \frac{\pi}{4}$. Putting everything together, we get:

$$\int_0^{\frac{1}{\sqrt{2}}} \frac{x^2}{\sqrt{1-x^2}} dx = \int_0^{\frac{\pi}{4}} \sin^2(\theta) d\theta = \frac{1}{2} \int_0^{\frac{\pi}{4}} 1 - \cos(2\theta) d\theta$$

Evaluating this last integral, we get:

$$\frac{1}{2} \left(\theta - \frac{1}{2} \sin(2\theta) \right|_{0}^{\frac{\pi}{4}} = \frac{1}{2} \left[\left(\frac{\pi}{4} - \frac{1}{2} \cdot 1 \right) - 0 \right] = \frac{\pi}{8} - \frac{1}{2}$$

(b) Since we see an $\sin^{-1}(x)$, we should think "Integration by Parts". Let

$$\frac{\text{sign}}{+ \sin^{-1}(x)} \frac{x}{-\frac{1}{\sqrt{1-x^2}} \frac{1}{2}x^2}$$

then:

$$\int x \sin^{-1}(x) \, dx = \frac{1}{2} x^2 \sin^{-1}(x) - \frac{1}{2} \int \frac{x^2}{\sqrt{1 - x^2}} \, dx$$

That last integral looks very familiar!! Using the integral from the first question,

$$\int \frac{x^2}{\sqrt{1-x^2}} \, dx = \frac{1}{2}\theta - \frac{1}{4}\sin(2\theta) = \frac{1}{2}\theta - \frac{1}{2}\sin(\theta)\cos(\theta)$$

so that:

$$\int \frac{x^2}{\sqrt{1-x^2}} dx = \frac{1}{2} \sin^{-1}(x) - \frac{1}{2} x \cdot \sqrt{1-x^2}$$

Altogether, our final answer is then:

$$\frac{1}{2}x^2\sin^{-1}(x) - \frac{1}{4}\sin^{-1}(x) + \frac{1}{4}x\sqrt{1 - x^2} + C$$

Alternative Solution (not recommended, but some of you tried it)

Given $\int x \sin^{-1}(x) dx$, we could make the substitutions:

$$\theta = \sin^{-1}(x)$$
 $\sin(\theta) = x$ $\cos(\theta) d\theta = dx$

so we get:

$$\int \sin(\theta) \cdot \theta \cdot \cos(\theta) \, d\theta = \frac{1}{2} \int \theta \sin(2\theta) \, d\theta$$

Now we could do integration by parts:

So that:

$$\frac{1}{2} \int \theta \sin(2\theta) \, d\theta = -\frac{1}{4} \theta \cos(2\theta) + \frac{1}{8} \cos(2\theta)$$

Now use trig identities before back substitution:

$$=-\frac{1}{4}\theta\cos(2\theta)+\frac{1}{8}\sin(2\theta)=-\frac{1}{4}\theta\left(1-2\sin^2(\theta)\right)+\frac{1}{8}\cdot2\sin(\theta)\cos(\theta)$$

For back substitution, use a triangle with lengths (adj, opp, hyp) = $(\sqrt{1-x^2}, x, 1)$, respectively:

$$\frac{1}{4}\theta \left(1 - 2\sin^2(\theta)\right) + \frac{1}{8} \cdot 2\sin(\theta)\cos(\theta) = \frac{1}{4} \cdot \sin^{-1}(x) \cdot \left(1 - 2x^2\right) + \frac{1}{4}x\sqrt{1 - x^2} + C$$

(c) First, split the integral and then evaluate each. The first one uses a straight u, du substitution, and the second uses an inverse tangent (which can be done right away, or through a triangle).

$$\int \frac{x+2}{x^2+3} \, dx = \int \frac{x}{x^2+3} \, dx + 2 \int \frac{1}{x^2+3} \, dx$$

For the first integral, let $u = x^2 + 3$ so that du = 2x dx:

$$\int \frac{x}{x^2 + 3} dx = \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln|u| = \frac{1}{2} \ln|x^2 + 3|$$

For the second integral, we can rewrite:

$$\frac{1}{3\left((x/\sqrt{3})^2+1\right)}\,dx$$

Now, $u = x/\sqrt{3}$, $\sqrt{3} du = dx$

$$\frac{1}{\sqrt{3}} \int \frac{1}{u^2 + 1} du = \frac{1}{\sqrt{3}} \tan^{-1}(u) = \frac{1}{\sqrt{3}} \tan^{-1}\left(\frac{x}{\sqrt{3}}\right)$$

Overall, our final answer is:

$$\frac{1}{2}\ln|x^2+3| + \frac{2}{\sqrt{3}}\tan^{-1}\left(\frac{x}{\sqrt{3}}\right) + C$$

2. Assigned April 10: