Final Exam Review Calculus II Sheet 1

These questions do not include the final section, 11.10. See Sheets 2 and 3 for the types of questions you'll see for this section.

- 1. State the definition of $\int_{a}^{b} f(x) dx$.
- 2. True or False, and give a short reason:
 - (a) The Alternating Series Test is sufficient to show that a series is conditionally convergent.
 - (b) You can use the Integral Test to show that a series is absolutely convergent.
 - (c) Consider $\sum a_n$. If $\lim_{n\to\infty} a_n = 0$, then the sum is said to converge.
 - (d) All continuous functions have antiderivatives.
 - (e) The sequence $a_n = 0.1^n$ converges to $\frac{1}{1-0.1}$
- 3. Set up an integral for the volume of the solid obtained by rotating the region defined by $y = \sqrt{x-1}$, y = 0 and x = 5 about the y-axis.
- 4. Write the area under $y = \sqrt[3]{x}$, $0 \le x \le 8$ as the limit of a Riemann sum (use right endpoints).
- 5. What is the derivative of e^{-2x} ? The antiderivative of e^{-3x} ? Same questions for $\sin(3x)$.
- 6. Find $\frac{dy}{dx}$, if $y = \int_{\cos(x)}^{5x} \cos(t^2) dt$
- 7. Let $f(x) = e^x$ on the interval [0, 2]. (a) Find the average value of f. (b) Find c such that $f_{avg} = f(c)$.
- 8. The velocity function is v(t) = 3t 5, $0 \le t \le 3$ (a) Find the displacement. (b) Find the distance traveled.

Does the series converge (absolute or conditional), or diverge?

9.
$$\sum_{n=1}^{\infty} \frac{\cos(n/2)}{n^2 + 4n}$$

10.
$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{5^n}$$

11.
$$\sum_{n=1}^{\infty} \frac{3^n n^2}{n!}$$

Find the interval of convergence:

12.
$$\sum_{n=1}^{\infty} \frac{n^2 x^n}{10^n}$$

13.
$$\sum_{n=1}^{\infty} \frac{(3x-2)^n}{n3^n}$$

14.
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n-1}}{(2n-1)!}$$

Evaluate the integral:

15.
$$\int \frac{1}{y^2 - 4y - 12} \ dy$$

$$17. \int x^2 \cos(3x) \, dx$$

$$19. \int \frac{dx}{x \ln(x)}$$

16.
$$\int \frac{2}{3x+1} + \frac{2x+3}{x^2+9} dx$$
 18.
$$\int_{-2}^{2} |x-1| dx$$

18.
$$\int_{-2}^{2} |x-1| dx$$

1

$$20. \int x\sqrt{x-1}\,dx$$