Review: Limits at Infinity

These are the techniques we had from Calculus I to find the horizontal asymptote
of a function.

1. When dealing with a fraction:

k
(a) “— = 0" If the numerator goes to a constant, and the denominator

00
goes to infinity, then overall the fraction goes to zero.

k
(b) “6 = DNE” If the numerator goes to a constant, and the denom-

inator goes to 0, then overall the fraction goes to infinity (plus or
minus); or you can say that it Does Not Exist (DNE).

(¢) Standard Algebraic Techniques:

i. Divide by a power of  (RECALL: If z > 0, z = V2. If x < 0,
then z = —vx?2)

ii. Rationalize (usually when square roots are added/subtracted)

(d) Some examples:
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2. Some functions with horizontal asymptotes:
(a) f(z) = tan~!(z) has horizontal asymptotes at y = 5 (as  — 00),
and 5* (as x — —00)

1
(b) f(z) = — has a horizontal asymptote at y = 0 if p > 1 and x — oo.
x

3. Using I'Hospital’s Rule:
The Rule: If you have “%” or “%”, then
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You may not be given a fraction- we may have to do some algebra first!

Sometimes you can use 'Hospital’s rule for a product, f(z) - g(z), and
sometimes for exponentiation, (f(x))?(*). See the examples below.

NOTE: f(x)9®) = e9(@)In(f@))



4. Examples
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First, some algebra: o= = v (®)
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Now, we need the limit of ng(f), which we can get using I'Hospital’s
rule: .
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Rewrite the product as a fraction so we can apply I’"Hospital’s rule:
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Rewrite using the rules of logarithms:
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Rewrite using the exponential function:

(1 + 1/33)96 — o7 In(1+1/x)

Then take the limit of this exponent:
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