Take Home Quiz Solutions

Test the series for convergence or divergence. If the series converges, say whether it is absolute or condi-
tional. Be specific about your reasons!
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We mlght see it right off the bat, but this looks a lot like the alternating harmonic series- which converges

only conditionally. To see this, we can first show that it does not converge absolutely by comparing it
to the harmonic series (the limit comparison test):

b — n?—n
lim — = lim = = lim =1
n—00 Uy n—oo = n—oo ’I’L2 +n
n
Since Y L diverges, so does Y +n

Now we can apply the Alternating Series Test:

e The terms -5 +1 are positive for n > 1.

e The terms are decreasing: After simplification, the derivative is:

oy B rr—(r-1)2r+1) 2?2201
(=)= (22 + )2 o p2(x+1)2

The numerator, 22 — 2z — 1 is positive if z > 1+ 1/2 ~ 2.4, so the expression overall will be negative
if x > 3. Therefore, the function will decreasing.

Alternatively, we can write the numerator as:
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Which is negative for x > 1 + V2

e The terms are going to zero:
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Use the ratio test to see if this converges absolutely:
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Therefore, the series converges, and it converges absolutely.
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Try the ratio test:
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Therefore, the series converges (absolutely).
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With these terms, we might go immediately to the integral test, with f(z) = 222"



e [s the function positive? Yes.

e Is the function decreasing? Differentiate and factor:
Fz) = z(2 - 323)e ™

Where is this negative? e’ is always positive, and « > 0. The derivative will be negative (x > 0)
if 2 32 < 0. This will be true if z > /2 ~ 0.8
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e Now integrate:

Therefore, the area under f(z) is finite, so the series will converge (absolutely, since the expression
is always positive anyway).
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This looks like a series with 5 = #, so we expect it to converge (absolutely, since the terms are all

positive).

We use the limit comparison test, since the ratio test will be inconclusive:
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Use the root test:
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Therefore, the series converges absolutely.
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We might see immediately that this series will not converge absolutely, since it is like > ﬁ

To show this, let’s go ahead and compare it:
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So this series diverges by the limit comparison test.

On the other hand, we can show that it converges using the Alternating Series Test:

e The terms are positive.
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e They are decreasing;:
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e And they are going to zero:
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Conclusion: The series > E}nlzz converges, but only conditionally.



