Review Questions, 5.3-5.5

Plus a few others!
You should also look through your homework questions and previous quizzes. For more problems like the ones on this sheet, see the Chapter 5 Review, p 426

1. True or False, and give a short reason:
(a) If f and g are continuous on $[a, b]$, then $\int_{a}^{b} f(x)+g(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
(b) If f and g are continuous on $[a, b]$, then $\int_{a}^{b} f(x) g(x) d x=\int_{a}^{b} f(x) d x \cdot \int_{a}^{b} g(x) d x$
(c) If f is continuous on $[a, b]$, then $\int_{a}^{b} x f(x) d x=x \int_{a}^{b} f(x) d x$
(d) If f^{\prime} is continuous on $[-1,4]$, then $\int_{-1}^{4} f^{\prime}(w) d w=f(4)-f(-1)$
(e) $\int_{-2}^{1} \frac{1}{x^{4}} d x=-\frac{3}{8}$
(f) All continuous functions have derivatives.
(g) All continuous functions have antiderivatives.
(h) If $v(t)$ is velocity at time t, then the distance traveled between times 3 and 7 is given by $\int_{3}^{7} v(t) d t$
(i) Even though the function:

$$
f(x)=\left\{\begin{aligned}
x^{2} & \text { if } x<1 \\
3+x & \text { if } x>1
\end{aligned}\right.
$$

is not continuous at $x=1$, we can compute $\int_{0}^{2} f(x) d x$.
2. Compare the notation:
(a) $\frac{d}{d x} \int_{a}^{x} f(t) d t$
(b) $\frac{d}{d x} \int_{a}^{b} f(t) d t$
(c) $\int_{a}^{b} \frac{d}{d x} f(x) d x$
(d) $\int_{a}^{b} f(x) d t$
3. Evaluate, where possible. If not, state why:
(a) $\int_{1}^{4} \frac{x^{2}-x+1}{\sqrt{x}} d x$
(b) $\int_{0}^{2} \frac{x}{\left(x^{2}-1\right)^{2}} d x$
(c) $\frac{d}{d x} \int_{3}^{3^{x}} t d t$
(d) $\int(1-x) \sqrt{2 x-x^{2}} d x$
(e) $\int \frac{\cos (\ln (x))}{x} d x$
(f) $\int_{0}^{1} \frac{d}{d x}\left(\frac{\mathrm{e}^{x}}{x+1}\right) d x$
(g) $\int_{0}^{2 \pi}|\sin (x)| d x$
(h) $\int \frac{x}{\sqrt{1-x^{4}}} d x$
(i) $\frac{d}{d x} \int_{2 x}^{3 x+1} \sin \left(t^{4}\right) d t$
(j) $\int \frac{x^{2}}{\sqrt{1-x}} d x$
4. If f is continuous and $\int_{0}^{4} f(x) d x=10$, find $\int_{0}^{2} f(2 x) d x$
5. If $g(x)=\int_{0}^{x} \frac{1}{1+t+t^{2}} d t$, find where g is concave up.
6. If $\int_{0}^{6} f(x) d x=10$ and $\int_{0}^{4} f(x) d x=7$, find $\int_{4}^{6} f(x) d x$

Challenge Problems!

If you breezed through the previous questions, and are looking for something more challenging, try these!
1.

$$
\frac{d^{2}}{d x^{2}} \int_{0}^{x}\left(\int_{1}^{\sin (t)} \sqrt{1+u^{4}} d u\right) d t
$$

2. If f is a differentiable function so that: $\int_{0}^{x} f(t) d t=(f(x))^{2}$ for all x, find f.
3. Find

$$
\lim _{h \rightarrow 0} \frac{1}{h} \int_{2}^{2+h} \sqrt{1+t^{3}} d t
$$

