
Solutions to Review Questions, 5.3-5.5

1. True or False, and give a short reason:

(a) If f and g are continuous on [a, b], then
∫ b

a

f(x) + g(x) dx =
∫ b

a

f(x) dx +
∫ b

a

g(x) dx

True. This is one of the properties of definite integrals.

(b) If f and g are continuous on [a, b], then
∫ b

a

f(x)g(x) dx =
∫ b

a

f(x) dx ·
∫ b

a

g(x) dx

Oooh- this is bad on so many levels! We can use just about any functions f and g and this will not
work. For example, ∫

x · x dx =
1
3
x3 + C

but
∫

x dx ·
∫

x dx =
(

1
2x2 + C1

) (
1
2x2 + C2

)
Another explanation would be that since

d

dx
(f(x) · g(x)) 6= f ′(x) · g′(x)

the reverse does not work, either.

(c) If f is continuous on [a, b], then
∫ b

a

xf(x) dx = x

∫ b

a

f(x) dx

False. The result of doing this would give you a function of x, but the definite integral is a number.
It is also false in general,

∫
xf(x) dx 6= x

∫
f(x) dx; for example

∫
x dx = 1

2x2 + C, but x
∫

dx =
x2 + Cx

(d) If f ′ is continuous on [−1, 4], then
∫ 4

−1

f ′(w) dw = f(4)− f(−1)

This is true, since the antiderivative of f ′ is f (that is, the derivative of f is f ′). So, this is the
Fundamental Theorem of Calculus, part II.

(e)
∫ 1

−2

1
x4

dx = −3
8

False. We cannot use the FTC on this integral since 1
x4 has a vertical asymptote at x = 0, which

is inside the interval [−2, 1].

(f) All continuous functions have derivatives.
False. For example, y = |x| does not have a derivative at x = 0, although it is continuous there.

(g) All continuous functions have antiderivatives.
True. This is the Fundamental Theorem of Calculus, Part I written out in words.

(h) If v(t) is velocity at time t, then the distance traveled between times 3 and 7 is given by
∫ 7

3

v(t) dt

False. To get the total distance traveled, we would evaluate
∫ 7

3

|v(t)| dt. If we want the relative

distance, we would ask for displacement, which is given as
∫ 7

3

v(t) dt

(i) Even though the function:

f(x) =
{

x2 if x < 1
3 + x if x > 1

is not continuous at x = 1, we can compute
∫ 2

0

f(x) dx.

This is true. Because there is not a vertical asymptote at x = 1, we can compute the integral by
breaking it up: ∫ 2

0

f(x) dx =
∫ 1

0

x2 dx +
∫ 2

1

3 + x dx
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2. Compare the notation:

(a)
d

dx

∫ x

a

f(t) dt This value is f(x)

(b)
d

dx

∫ b

a

f(t) dt This value is zero (it’s the derivative of a constant).

(c)
∫ b

a

d

dx
f(x) dx This value is f(b)− f(a)

(d)
∫ b

a

f(x) dt This is a little tricky- since the integral is in terms of t, but f is an expression in x, it

will be constant with respect to t. The answer: f(x)(b− a).

3. Evaluate, where possible. If not, state why:

(a)
∫ 4

1

x2 − x + 1√
x

dx =
∫ 4

1

x3/2 − x1/2 + x−1/2 dx =
2
5
x5/2 − 2

3
x3/2 + 2x1/2

∣∣∣∣4
1

=
146
15

(b)
∫ 2

0

x

(x2 − 1)2
dx The function has a vertical asymptote at x = 1; FTC does not apply.

(c)
d

dx

∫ 3x

3

t dt = 3x · 3x ln(3) = 32x ln(3)

(d)
∫

(1− x)
√

2x− x2 dx Use u = 2x− x2, du = 2− 2x dx, or 1
2du = 1− x dx. This gives:∫

(1− x)
√

2x− x2 dx =
1
2

∫
u1/2 du =

1
2
· 2
3
u3/2 + C =

1
3
· (2x− x2)3/2 + C

(e)
∫

cos(ln(x))
x

dx Use u = ln(x), so du = 1
x dx, which gives:∫

cos(ln(x))
x

dx =
∫

cos(u) du = sin(u) + C = sin(ln(x)) + C

(f)
∫ 1

0

d

dx

(
ex

x + 1

)
dx =

ex

x + 1

∣∣∣∣1
0

=
1
2
e− 1

(g)
∫ 2π

0

| sin(x)| dx The sine function is positive for 0 < x < π and negative for π < x < 2π, so we

rewrite: ∫ π

0

sin(x) dx−
∫ 2π

π

= − cos(x)|π0 + cos(x)|2π
π = 2 + 2 = 4

(h)
∫

x√
1− x4

dx You might have tried u = 1 − x4, but that doesn’t get us very far. Note that this

expression is close to 1√
1−x2 , whose antiderivative is sin−1(x). This suggests that we try: u = x2,

du = 2x dx or 1
2du = x dx. Putting this together,∫

x√
1− x4

dx =
1
2

∫
1√

1− u2
du =

1
2

sin−1(u) + C =
1
2

sin−1(x2) + C

(i) d
dx

∫ 3x+1

2x

sin(t4) dt Here we use the general formula:
d

dx

∫ h(x)

a

f(t) dt = f(h(x)) · h′(x). First,

rewrite:
d

dx

∫ 3x+1

2x

sin(t4) dt =
d

dx

∫ 1

2x

sin(t4) dt +
d

dx

∫ 3x+1

1

sin(t4) dt =

− d

dx

∫ 2x

1

sin(t4) dt +
d

dx

∫ 3x+1

1

sin(t4) dt = − sin((2x)4) · 2 + sin((3x + 1)4) · 3
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(j)
∫

x2

√
1− x

dx Here, we’ll try u = 1− x, so that du = −dx. But we still have x2 in the numerator.

Use u = 1− x so that x = 1− u and x2 = (1− u)2 = 1− 2u + u2, and now do the full substitution:∫
x2

√
1− x

dx = −
∫

1− 2u + u2

√
u

du = −
∫

(u−1/2 − 2u1/2 + u3/2) du =

−
(

2u1/2 − 2 · 2
3
u3/2 +

2
5
u5/2

)
+ C = −2

√
1− x +

4
3
(1− x)3/2 − 2

5
(1− x)5/2 + C

Note: Since C is arbitrary, you could have either C or −C in your answer

4. If f is continuous and
∫ 4

0

f(x) dx = 10, find
∫ 2

0

f(2x) dx With that 2x, we should be tempted to use

u = 2x, du = 2 dx or 1
2du = dx. Now, for the bounds, if x = 0, then u = 0 and if x = 2, u = 4. This

says: ∫ 2

0

f(2x) dx =
1
2

∫ 4

0

f(u) du =
1
2
· 10 = 5

5. If g(x) =
∫ x

0

1
1 + t + t2

dt, find where g is concave up. To find where g is concave up, we must compute

its second derivative and find where it is positive:

g′(x) =
1

1 + x + x2
= (1 + x + x2)−1 g′′(x) =

−(1 + 2x)
(1 + x + x2)2

Since the denominator is always positive, we need look only for where the numerator is positive:

−1− 2x > 0 ⇒ −2x > 1 ⇒ x <
1
2

If x < 1
2 , then g′′(x) > 0, so g is concave up.

6. If
∫ 6

0

f(x) dx = 10 and
∫ 4

0

f(x) dx = 7, find
∫ 6

4

f(x) dx. By a property of integrals,

∫ 6

4

f(x) dx =
∫ 6

0

f(x) dx−
∫ 4

0

f(x) dx = 10− 7 = 3

Challenge Problems!
If you breezed through the previous questions, and are looking for something more challenging, try these!

1.
d2

dx2

∫ x

0

(∫ sin(t)

1

√
1 + u4 du

)
dt

First, let F (t) =
∫ sin(t)

1

√
1 + u4 du, so that the first derivative is:

d

dx

∫ x

0

F (t) dt = F (x) =
∫ sin(x)

1

√
1 + u4 du

Now the next derivative is our standard problem:

d

dx

∫ sin(x)

1

√
1 + u4 du =

√
1 + (sin(x))4 · cos(x)
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2. If f is a differentiable function so that:
∫ x

0

f(t) dt = (f(x))2 for all x, find f .

We can remove the integral by differentiating both sides:

f(x) = 2f(x) · f ′(x) ⇒ f(x)− 2f(x) · f ′(x) = 0 ⇒ f(x) (1− 2f ′(x)) = 0

This says that either f(x) = 0 or 1− 2f ′(x) = 0. For the first case, we see that f(x) = 0 will solve our
original function, since

∫ x

0
0 dx = 0 for all x.

In the second case, f ′(x) = 1
2 , so f(x) = 1

2x + C. To get the value of C, notice in the original equation
that if x = 0, then: ∫ 0

0

f(x) dx = (f(0))2 ⇒ f(0) = 0

Thus, C = 0.

So, we have two possibilities: f(x) = 0 or f(x) = 1
2x.

3. Find

lim
h→0

1
h

∫ 2+h

2

√
1 + t3 dt

Do we recognize this as a derivative? If g(x) =
∫ x

0

f(t) dt, then

g′(2) = lim
h→0

1
h

(g(2 + h)− g(2)) = lim
h→0

1
h

(∫ 2+h

0

f(t) dt−
∫ 2

0

f(t) dt

)
= lim

h→0

1
h

∫ 2+h

2

f(t) dt

In particular, if g(x) =
∫ x

0

√
1 + t3 dt, then g′(x) =

√
1 + t3, so

lim
h→0

1
h

∫ 2+h

2

√
1 + t3 dt = g′(2) =

√
1 + 23 =

√
9 = 3

Note: the use of 0 in the definition of g was arbitrary- we could’ve used any constant greater than −1.
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