Final Exam Review Calculus II Sheet 1

- 1. State the definition of $\int_a^b f(x) dx$, assuming equal subintervals and right endpoints.
- 2. True or False, and give a short reason:
 - (a) The Alternating Series Test is sufficient to show that a series is conditionally convergent.
 - (b) You can use the Integral Test to show that a series is absolutely convergent.
 - (c) Consider $\sum a_n$. If $\lim_{n\to\infty} a_n = 0$, then the sum is said to converge.
 - (d) The sequence $a_n = 0.1^n$ converges to $\frac{1}{1-0.1}$.
 - (e) All continuous functions have derivatives.
 - (f) All continuous functions have antiderivatives.
- 3. Set up an integral for the volume of the solid obtained by rotating the region defined by $y = \sqrt{x-1}$, y = 0 and x = 5 about the y-axis. Find the work involved if this was a tank filled with water and we wanted to pump it all out of the top (You may assume the measurements are in meters, and g = 9.8. The density of water is 1000 kg/m³).
- 4. Write the area under $y = \sqrt[3]{1+x}$, $1 \le x \le 4$ as the limit of a Riemann sum (use **right** endpoints). For the same function, write an integral representing the arc length (do not evaluate the integral).
- 5. Find the Taylor series for $f(x) = \sqrt{x}$ centered at a = 9.
- 6. Find $\frac{dy}{dx}$, if $y = \int_{\cos(x)}^{5x} \cos(t^2) dt$
- 7. Let $f(x) = e^x$ on the interval [0, 2]. (a) Find the average value of f. (b) Find c such that $f_{\text{avg}} = f(c)$.
- 8. Use a template series to find the series for $\int \cos(x^2) dx$.
- 9. Does the series converge (absolute or conditional), or diverge?

(a)
$$\sum_{n=1}^{\infty} \frac{\cos(n/2)}{n^2 + 4n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n^2 + 1}{5^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{3^n n^2}{n!}$$

10. Find the interval of convergence:

(a)
$$\sum_{n=1}^{\infty} \frac{n^2 x^n}{10^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(3x-2)^n}{n3^n}$$

1

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n-1}}{(2n-1)!}$$

11. Evaluate the integral.

(a)
$$\int \frac{1}{y^2 - 4y - 12} \, dy$$
 (e) $\int \frac{dx}{x \ln(x)}$

(e)
$$\int \frac{dx}{x \ln(x)}$$

(h)
$$\int \sin^2(x) \cos^3(x) \, dx$$

(a)
$$\int y^2 - 4y - 12^{-xy}$$
 (b) $\int \frac{2}{3x+1} + \frac{2x+3}{x^2+9} dx$ (f) $\int x\sqrt{x-1} dx$

(f)
$$\int x\sqrt{x-1}\,dx$$

(i)
$$\int \sin^{-1}(x) dx$$

(c)
$$\int x^2 \cos(3x) \, dx$$

$$(j) \int \frac{dx}{\sqrt{x^2 - 9}}$$

(d)
$$\int_{-2}^{2} |x - 1| dx$$

(c)
$$\int x^2 \cos(3x) dx$$

(d) $\int_{-2}^2 |x - 1| dx$
(g) $\int_0^\infty \frac{x^2}{\sqrt{1 + x^3}} dx$

- 12. The velocity function is v(t) = 3t 5, $0 \le t \le 3$ (a) Find the displacement. (b) Find the distance traveled.
- 13. Set up the integral that will give the length of the graph of $y = \sqrt{x x^2} + \sin^{-1}(\sqrt{x})$, with $0 \le x \le 1$.
- 14. (You can use a calculator at home for the following problem, which would be suitably changed for an exam with no calculators) Find the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^3}$ correct to three decimal places.
- 15. Evaluate each sum. Hint on part (c): Partial Fractions

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{6^{2n} (2n)!}$$

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{6^{2n} (2n)!}$$
 (b) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3^{n+2}}{2^{2n}}$ (c) $\sum_{n=1}^{\infty} \frac{1}{n(n+3)}$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+3)}$$

16. Determine whether the integral is convergent or divergent: