Final Exam Review Calculus II Sheet 2

- 1. True or False, and give a short reason:
 - (a) If f has a discontinuity at 0, then $\int_{-1}^{1} f(x) dx$ does not exist.
 - (b) The Ratio Test will not give a conclusive result for $\sum \frac{2n+3}{3n^4+2n^3+3n+5}$
 - (c) If $\sum_{n=k}^{\infty} a_n$ converges for some large k, then so will $\sum_{n=1}^{\infty} a_n$.
 - (d) If f is continuous on $[0, \infty)$ and $\lim_{x \to \infty} f(x) = 0$, then $\int_0^\infty f(x) dx$ converges.
 - (e) If f is continuous and $\int_0^9 f(x) dx = 4$, then $\int_0^3 x f(x^2) dx = 4$.

2. Short Answer:

- (a) Suppose the series $\sum c_n 3^n$ converges. Will $\sum c_n (-2)^n$ also converge? For what values of x will the series $\sum c_n (x-2)^n$ converge?
- (b) If $\sum a_n$, $\sum b_n$ are series with positive terms, and a_n , b_n both go to zero as $n \to \infty$, then what can we conclude if $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$?
- (c) What is the derivative of $\sin^{-1}(x)$? Of $\tan^{-1}(x)$? What is the antiderivative of each?
- (d) Find the sum: $\sum_{n=1}^{\infty} e^{-2n}$
- 3. A bacteria population starts with 400 bacteria and grows at a rate of $r(t) = 450e^t$ bacteria per hour. How many bacteria will there be after three hours?
- 4. Suppose h(1) = -2, h'(1) = 2, h''(1) = 3, h(2) = 6, h'(2) = 5, and h''(2) = 13, and h'' is continuous. Evaluate $\int_1^2 h''(u) \ du$.
- 5. Determine a definite integral representing: $\lim_{n\to\infty}\sum_{i=1}^n\frac{3}{n}\sqrt{1+\frac{3i}{n}}$ [For extra practice, try writing the integral so that the right endpoint (or bottom bound) must be 5].
- 6. Evaluate $\int_2^5 (1+2x) dx$ by using the definition of the integral (use right endpoints).
- 7. For each function, find the Taylor series for f(x) centered at the given value of a:
 - (a) $f(x) = 1 + x + x^2$ at a = 2
 - (b) $f(x) = \frac{1}{x}$ at a = 1.
- 8. Find a so that half the area under the curve $y = \frac{1}{x^2}$ lies in the interval [1, a] and half of the area lies in the interval [a, 4].

1

- 9. Compute the limit, by using the series for $\sin(x)$: $\lim_{x \to 0} \frac{\sin(x)}{x}$
- 10. Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by y = x, $y = 4x - x^2$, about x = 7.
- 11. Evaluate each of the following:

(a)
$$\frac{d}{dx} \int_{3x}^{\sin(x)} t^3 dt$$
. (b) $\frac{d}{dx} \int_1^5 x^3 dx$

(b)
$$\frac{d}{dx} \int_1^5 x^3 dx$$

(c)
$$\int_{1}^{5} \frac{d}{dx} x^3 dx$$

12. Converge (absolute or conditional) or Diverge?

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{(n+1)(n+2)}$$
 (b) $\sum_{n=1}^{\infty} \frac{\sqrt{n^2 - 1}}{n^3 + 2n^2 + 5}$ (c) $\sum_{k=1}^{\infty} \frac{4^k + k}{k!}$

(b)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^2 - 1}}{n^3 + 2n^2 + 5}$$

$$(c) \sum_{k=1}^{\infty} \frac{4^k + k}{k!}$$

13. Find the interval of convergence.

(a)
$$\sum_{n=1}^{\infty} n^n x^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{(x+2)^n}{n4^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{2^n(x-3)^n}{\sqrt{n+3}}$$

14. Evaluate:

(a)
$$\int_0^\infty \frac{1}{(x+2)(x+3)} dx$$
 (d) $\int \frac{\tan^{-1}(x)}{1+x^2} dx$

(d)
$$\int \frac{\tan^{-1}(x)}{1+x^2} dx$$

(g)
$$\int e^{-x} \sin(2x) \, dx.$$

(b)
$$\int u(\sqrt{u} + \sqrt[3]{u}) \ du$$

(e)
$$\int \frac{1}{\sqrt{x^2 - 4x}} \, dx$$

(h)
$$\int_0^3 \frac{1}{\sqrt{x}} \, dx$$

(b)
$$\int u(\sqrt{u} + \sqrt[3]{u}) du$$
 (e) $\int \frac{1}{\sqrt{x^2 - 4x}} dx$ (h) $\int_0^3 \frac{1}{\sqrt{x}} dx$ (c) $\int \frac{x^2}{(4 - x^2)^{3/2}} dx$ (f) $\int x^4 \ln(x) dx$ (i) $\int \sin^2 x dx$

(f)
$$\int x^4 \ln(x) dx$$

(i)
$$\int \sin^2 x \ dx$$

15. Find the surface area of the surface of revolution formed by rotating the graph of $y=x^2$ from (1,1) to (2,4) about the y-axis.