Final Exam Review Calculus II Sheet 3

1. Determine if the series converges (absolute or conditional) or diverges:

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \ln(n)}{n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{n^3}{e^{n^4}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{e^n}{n!}$$

(d)
$$\sum_{n=1}^{\infty} 4^{1-2n}$$

2. Let
$$a_n = \frac{n + \ln(n)}{n^2}$$
.

- (a) Does the sequence $\{a_n\}$ converge or diverge? If it converges, find what it converges
- (b) Does the series $\sum_{n=1}^{\infty} a_n$ converge or diverge?
- 3. A bug is crawling along the graph of the curve y = 3x + 1 for x in the interval [0, t]. Find the distance the bug has traveled as a function of t.
- 4. Find the interval of convergence for each of the series:

(a)
$$\sum_{n=0}^{\infty} \frac{(2x-3)^n}{n \ln(n)}$$
 (b) $\sum_{n=0}^{\infty} \frac{x^n}{n+1}$

(b)
$$\sum_{n=0}^{\infty} \frac{x^n}{n+1}$$

$$(c) \sum_{n=0}^{\infty} \frac{3^n x^n}{5^n}$$

- 5. Expand the function $f(x) = \frac{2}{4-3x}$ as a power series centered at x = 0, and determine the values of x for which the series converges.
- 6. Evaluate the integral:

(a)
$$\int \frac{x^2}{\sqrt{16 - x^2}} \, dx$$

(d)
$$\int \tan^{-1}(x) \, dx$$

(g)
$$\int_0^3 |x^2 - 4| dx$$

(b)
$$\int x \sec(x) \tan(x) \, dx$$

(e)
$$\int \frac{x^2 - x + 1}{x^2 + x} dx$$

(a)
$$\int \frac{x^2}{\sqrt{16 - x^2}} dx$$
 (d) $\int \tan^{-1}(x) dx$ (g) $\int_0^3 |x^2 - 4| dx$
 (b) $\int x \sec(x) \tan(x) dx$ (e) $\int \frac{x^2 - x + 1}{x^2 + x} dx$ (h) $\int_1^9 \frac{\sqrt{x} - 2x^2}{x} dx$

(c)
$$\int x^2 e^{-2x} dx$$

$$(f) \int \frac{dx}{x^2 + 4x - 5}$$

(f)
$$\int \frac{dx}{x^2 + 4x - 5}$$
 (i) $\int_{-3}^3 \frac{\sin(x)}{x^2 + 1} dx$

- 7. Evaluate $\int \frac{dx}{x^2-1} dx$ two ways- Using partial fractions and using trig substitution.
- 8. Determine if the integral converges or diverges. If it converges, determine what it converges to. $\int_{0}^{9} e^{4x} dx$
- 9. Does the integral converge or diverge (and give a short reason): $\int_{8}^{\infty} \sin^{2}(x) e^{-x} dx$

1

- 10. Consider the region in the first quadrant bounded by the curve $y = 9-x^2$ with $0 \le x \le 3$. Consider the solid obtained by rotating that region about the x axis. Set up two integrals that represent the volume of this solid- One using shells, and one using disks.
- 11. Same region as before. Set up an integral representing the volume (using any appropriate technique) if the region is revolving about x = 4, and then if the region is revolving about y = -2.
- 12. A container weighing 50 lbs is filled with 20 ft³ of water. The container is raised vertically at a constant speed of 2 ft/sec for 1 minute, during which time the water leaks out at a rate of 1/3 ft³/sec. Calculate the total work performed in raising the container (ignore the rope).
- 13. Use the *definition* of the definite integral (with right endpoints) to calculate the value of $\int_0^2 (x^2 x) dx$.
- 14. Find the derivative (with respect to x) of the function : $F(x) = \int_{\sqrt{x}}^{x} \frac{e^{t}}{t} dt$
- 15. Find the c guaranteed by the Mean Value Theorem for Integrals, if f(x) = 1/x on the interval [1, 3]. Hint: It has something to do with the average value of f.
- 16. Find an integral representing the surface area for the surface obtained by rotating the graph of $y = \sin(x)$, $0 \le x \le \pi$ about the line y = -1.
- 17. (a) Find the Taylor series for f centered at 4 if

$$f^{(n)}(4) = \frac{(-1)^n n!}{3^n (n+1)}$$

(b) What is the radius of convergence of the Taylor series? (c) If we want to approximate f by a cubic polynomial (centered at 4), write the polynomial we would use.