
Hints for Section 7.3

1. With the suggestion x = 2 sin(θ):∫ dx

x2
√

4− x2
=
∫ 2 sin(θ) dθ

(4 sin2(θ))(2 cos(θ))
=

1

4

∫
csc2(θ) dθ = −1

4
cot(θ) + C

The substitution sin(θ) = x/2 gives us the relationship between lengths in a right
triangle (write one angle as θ, the side opposite θ has length x, the hypotenuse has
length 2, and the other leg has length

√
4− x2 by the Pythagorean Theorem. Read off

the values for cot(θ), and you should get the answer in the back of the text.

4. This problem can actually be done faster using u = 1 − x2, but let’s do the trig
substitution. The expression 1 − x2 suggests that we use x = sin(θ). As we perform
the substitution, we may wish to change the integral bounds at the same time:∫

x3
√

1− x2 dx =
∫

sin3(θ)
√

1− sin2(θ) cos(θ)dθ =
∫

sin3(θ) cos2(θ)dθ

This last integral is true as long as cos(θ) > 0, so that
√

cos2(θ) = cos(θ). To check
this, look at the integral bounds:

• If x = 0, then sin(θ) = 0, so that θ = 0.

• If x = 1, then sin(θ) = 1, so that θ = π/2.

• The cosine is positive for 0 ≤ θ ≤ π/2, so we continue with these bounds.

Now we proceed with the technique from 7.2, since we have an odd power of sine.
That is, reserve one of them for u, du substitution with u = cos(θ) (watch the integral
bounds!) ∫ π/2

0
sin2(θ) cos2(θ)(sin(θ)dθ =

∫ 0

1
(1− u2)u2(− du) =∫ 1

0
u2 − u4 du =

1

3
u3 − 1

5
u5 =

1

3
− 1

5
=

2

15

5. The expression t2 − 1 suggests that we use t = sec(θ), so that t2 − 1 will simplify.∫ 2

√
2

1

t3
√
t2 − 1

dt =
∫ 1

sec3(θ)
√

sec2(θ)− 1
sec(θ) tan(θ)dθ =

∫
cos2(θ) dθ

For the integral bounds, use the 45-45-90 and 30-60-90 triangles:

t =
√

2 ⇒ sec(θ) =
√

2 ⇒ cos(θ) =
1√
2
⇒ θ =

π

4

t = 2 ⇒ sec(θ) = 2 ⇒ cos(θ) =
1

2
⇒ θ =

π

3

1



Continuing, use the half-angle formula to integrate:

1

2

∫ π/3

π/4
1 + cos(2θ) dθ =

(
1

2
θ +

1

4
sin(2θ)

∣∣∣∣π/4
π/3

and so on.

11. The expression 1− 4x2 suggests that we use 2x = sin(θ).∫ √
1− 4x2 dx =

∫ √
1− sin2(θ) · 1

2
cos(θ)dθ =

1

2

∫
cos2(θ) dθ =

1

4

∫
1 + cos(2θ) dθ =

1

4
θ +

1

8
sin(2θ) + C

Now we use 2x = sin(θ) to do our back substitution. We get θ = sin−1(θ) and for
sin(2θ), use the identity

sin(2θ) = 2 sin(θ) cos(θ)

and the right triangle (one angle is θ, with opposite side length 2x, and hypotenuse 1),
so that in terms of x,

sin(2θ) = 2 sin(θ) cos(θ) = 2 · 2x ·
√

1− 4x2.

The overall solution is therefore

1

4
sin−1(2x) +

1

2
x
√

1− 4x2

13. The expression x2 − 9 suggests that we use x = 3 sec(θ), so that x2 − 9 becomes
9(sec2(θ)− 1) = 9 tan2(θ). With that, we have:∫ √x2 − 9

x3
dx =

∫ 3 tan(θ)

27 sec3 θ
· 3 sec(θ) tan(θ) dθ =

1

3

∫ tan2(θ)

sec2(θ)
dθ =

1

3

∫
sin2(θ)dθ

Integrating this with the half-angle formula:

1

6

∫
1− cos(2θ)dθ =

1

6
θ − 1

12
sin(2θ) + C

Don’t use the inverse secant when converting back (only inverse sine, cosine and tan-
gent if you can do it). That’s because we should never need it, and most comput-
ers/calculators will not have an “inverse secant” button. Then we have:

x = 3 sec(θ) ⇒ cos(θ) =
3

x
⇒ θ = cos−1

(
3

x

)
For sin(2θ), first write it using the trig identity, then use the triangle.

sin(2θ) = 2 sin(θ) cos(θ) = 2 ·
√
x2 − 9

x
· 3

x
=

6
√
x2 − 9

x2

That gives us the solution:

1

6
cos−1

(
3

x

)
−
√
x2 − 9

2x2
+ C

2



15. Let x = a · sin(θ). Be careful of the integral bounds-

x = 0 ⇒ sin(θ) = 0 ⇒ θ = 0

x = a ⇒ a sin(θ) = a ⇒ θ = π/2

Now we form the integral:∫ a

0
x2
√
x2 − a2 dx =

∫ π/2

0
a2 sin2(θ)

√
a2(sin2(θ)− 1) ·a cos(θ)dθ = a4

∫ π/2

0
sin2(θ) cos2(θ) dθ

There are several ways to continue. One way is to use the half angle formula for sine
and cosine, then multiply the result out. Another way is to use sin(2x) = 2 sin(x) cos(x)
and integrate: ∫ (

1

2
sin(2θ)

)2

dθ =
1

4

∫ 1

2
(1− cos(4θ)) dθ

19. Let x = tan(θ):

∫ √1 + x2

x
dx =

∫ √
1 + tan2(θ)

tan(θ)
· sec2(θ) dθ =

∫ sec3(θ)

tan(θ)
dθ

It may not be clear what what to do from here. Hint: sec2(θ) = tan2(θ) + 1. Using
that,∫ tan2(θ) + 1

tan(θ)
sec(θ) dθ =

∫
sec(θ) tan(θ)+

cos(θ)

sin(θ)
· 1

cos(θ)
dθ =

∫
sec(θ) tan(θ)+csc(θ) dθ

(Remember the table of integrals you’ll have). Evaluating, we have:

sec(θ) + ln | csc(θ)− cot(θ)|+ C

Convert this back to x using the triangle suggested by x = tan(θ):

√
1− x2 + ln

∣∣∣∣∣
√

1− x2
x

− 1

x

∣∣∣∣∣+ C

23. Complete the square so that:

−x2 + 4x+ 5 = −(x2 − 4x+ ) + 5 = −(x2 − 4x+ 4) + (5 + 4) = 9− (x− 2)2.

Now we can substitute x− 2 = 3 sin(θ) so that:∫ √
5 + 4x− x2 dx =

∫ √
9− (x− 2)2 dx =

∫ √
9 cos2(θ) · 3 cos(θ) dθ = 9

∫
cos2(θ) dθ

Integrate this using the half angle identity, then convert back to x:

9

2

∫
1 + cos(2θ) dθ =

9

2
θ +

9

4
sin(2θ) =

9

2
θ +

9

4
2 sin(θ) cos(θ)

Converting back and simplifying, we get what’s in the back of the text.

3



25. Complete the square so that

x2 + x+ 1 =
(
x+

1

2

)2

+
3

4
⇒ x+

1

2
=

√
3

2
tan(θ)

The integral simplifies to integrating tan(θ) sec(θ) and sec(θ).

27. Complete the square so that x2 + 2x = (x + 1)2 − 1, and let x + 1 = sec(θ). We end
up integrating tan2(θ) sec(θ) (write all in terms of sec(θ) and use the table.

29. Let u = x2 and du = 2x dx. Then let u = sin(θ) (or do the substitution directly by
taking x2 = sin(θ), etc. End up integrating cos2(θ).

31(a) Let x = a tan(θ), and end up integrating sec(θ).

33. Typo: Ignore this problem until we’ve gone through 6.5.

35. The area of the triangle POQ is

1

2
(r cos(θ))(r sin(θ)) =

1

2
r2 cos(θ) sin(θ)

The area of PQR is ∫ r

r cos(θ)

√
r2 − x2 dx

We find that the area of the desired sector is the sum of the area of the triangle and
the area using the integral above. Summing these, we get 1

2
r2θ.
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