
Homework Hints, Section 11.1

2. A convergent sequence is a sequence for which the limit exists. Here are two examples.
The first is has a limit at zero, the second at π/2 (the horizontal asymptote for the
inverse tangent function).

an =
n2

en
qquad an = tan−1(n)

Here are two examples of divergent sequences. One increases without bound, and the
other oscillates between two numbers.

an =
en

n3
an = (−1)n

6. If an = cos(nπ/2), then you can read the sequence off the graph of the cosine function
(if the beginning index is not given, you may assume it begins with n = 1).

{0,−1, 0, 1, 0,−1, . . .}

8. an = (−1)n n
n!+1

Nothing special here, this was assigned for practice with the factorial n!.{
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9. This is called a recursive sequence. Normally, an = f(n), but in this case, we have

the next term as a function of the previous terms. The difference between these is
that with an = f(n), we can compute the value of the sequence for any n without
computing anything else. For a recursive sequence, you need to compute the sequence
all the way up to n. In this case,

a1 = 1, a2 = 5(1)− 3 = 2 a3 = 5(2)− 3 = 7,

and so on.

13. Problems 13 and 15 are there for you to practice looking for patterns.

19. Problems 19 and 21 are there for you to see how to associate the limit with computation.
These are straightforward enough that if you want to simply compute the limit, that’s
fine.

25. Use L’Hospital’s rule, or divide numerator and denominator by n2.

28. This was assigned for the algebraic manipulation:

3n+2

5n
=

323n

5n
= 9

(
3

5

)n
Since 3/5 is less than 1, as n→∞, an → 0.
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29. Think about the general rule:

lim
n→∞

g(an) = g
(

lim
n→∞

an

)
= g(L)

which is true if g is continuous at L (the limit of the sequence). In this particular case,
let

an =
2πn

1 + 8n

As n→∞, an → 2π
8

= π
4
, and the tangent function is continuous at π/4 (its horizontal

asymptotes are at multiples of π/2). Therefore,

lim
n→∞

tan

(
2πn

1 + 8n

)
= tan

(
lim
n→∞

2πn

1 + 8n

)
= tan

(π
4

)
= 1

33. Consider |an| to get rid of (−1)n, then it is easy to compute the limit:

lim
n→∞

|an| = lim
n→∞

1

2
√
n

= 0

therefore, an → 0 as well.

36. Same idea as #29, the limit is cos(0) = 1.

50. Use l’Hospital’s rule:

lim
n→∞

(ln(n))2

n
= lim

n→∞

2 ln(n) 1
n

1
= lim

n→∞

2 ln(n)

n
= lim

n→∞

2 1
n

1
= 0

55. As a hint, write out the factorial first:

n!

2n
=

1 · 2 · 3 · 4 · · ·n
2 · 2 · 2 · 2 · · · 2

Notice that as n increases, we are multiplying by numbers that are larger than 1, and
getting bigger and bigger:

n!

2n
=

1

2
· 1 · 3

2
· 2 · 5

2
· 3 · · · n

2

so we see that an is diverging (to infinity). A formal way of saying this would be to
observe that

n!

2n
=

1 · 2 · 3 · 4 · · ·n
2 · 2 · 2 · 2 · · · 2

>
1

2

n

2
=

1

4
n

and this smaller sequence diverges (so the larger sequence must also diverge).

59. This one uses the same technique as #29 and #36:

lim
n→∞

√
3 + 2n2

8n2 + n
=

√
lim
n→∞

3 + 2n2

8n2 + n
=

√
2

8
=

1

2

2



62. This one gives us some practice dealing with sequences involving factorials. To get a
feeling for what this sequence is, let’s compute the first few terms:

a1 = 1

a2 =
1 · 3

2
=

3

2

a3 =
1 · 3 · 5

2 · 2
>

3 · 3
2 · 2

a4 =
1 · 3 · 5 · 7

2 · 2 · 2
>

3 · 3 · 3
2 · 2 · 2

From this, we conclude that an > (3/2)n−1, which diverges. Therefore, an diverges as
well.

73. The sequence is decreasing, since

an+1 =
1

2(n+ 1) + 3
<

1

2n+ 3
= an

75. The sequence is neither increasing nor decreasing- it is “oscillating” from the (−1)n

term (and going to ±∞).
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