
Homework Hints, 11.10- Taylor and Maclaurin Series

1-4, 5, 6, 9, 13-14, 16, (25, 27)*, (29, 31, 33)**, 39***, 56-57, 63, 65, 66, 68
where ∗−Use Theorem 17, (**) means to use Table 1, and (***) means to use a computer

or graphing calculator.

1. The question is a little vague- It should say: “... write a formula for b8 in terms of f .”
Then we just have the formula from the Taylor series:

f(x) = b0 + b1(x− 5) + b2(x− 5)2 + ·+ b8(x− 5)8 + · · ·

so that differentiating 8 times gives us:

f (8)(x) = 8!b8 + 9!b9(x− 5) + · · · ⇒ b8 =
f (8)(5)

8!

2(a). It looks like f(1) > 1, so its possible that c0 = 1.6.

Going to the next term, 1.6−0.8(x−1) should be f(1) +f ′(1)(x−1) (the tangent line
approximation to f at x = 1). That would mean that f ′(1) = −0.8, but f is increasing
at 1, which means f ′(1) > 0. Therefore, this cannot be the Taylor series for f .

2(b). Similar in argument to 2(a), at x = 2, we should have:

f(2) + f ′(2)(x− 2) +
f ′′(2)

2!
(x− 2)2 + · · · = 2.8 + 0.5(x− 2) + 1.5(x− 2)2 + · · ·

It is plausible that f(2) ≈ 2.8 and f ′(2) ≈ 0.5, but what about f ′′(2)
2
≈ 1.5? It is

apparent from the graph of the function that f is concave down at x = 2, which means
that f ′′(2) < 0. But this would contradict our earlier statement, that f ′′(2) ≈ 3.

3. The problem statement is telling us that:

cn =
f (n)(a)

n!
=

(n+ 1)!

n!
= n+ 1 ⇒

∞∑
n=0

(n+ 1)xn

Use the Ratio Test to finish.

4. The problem statement is telling us how to get cn for the Taylor series:

cn =
f (n)(4)

n!
=

(−1)nn!

3n(n+ 1)
· 1

n!
=

(−1)n

3n(n+ 1)

Therefore, the Taylor series for this function is given by

∞∑
n=0

(−1)n

3n(n+ 1)
(x− 4)n

For the radius of convergence, use the Ratio Test, and find that ρ = 3.

For 5, 6 and 9, try to find the pattern in the derivatives
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5.
n f (n)(x) f (n)(0)
n = 0 (1− x)−1 1
n = 1 (1− x)−2 1
n = 2 2(1− x)−3 2
n = 3 3 · 2(1− x)−4 3!
n = 4 4 · 3 · 2(1− x)−5 4!
...
n n!

⇒ 1

1− x
=
∞∑
n=0

n!

n!
xn =

∞∑
n=0

xn

which of course converges for |x| < 1 (it is a geo series).

6.

n f (n)(x) f (n)(0)
n = 0 ln(1 + x) 0
n = 1 (1 + x)−1 1
n = 2 −(1 + x)−2 −1
n = 3 2(1− x)−3 2
n = 4 −3 · 2(1− x)−4 −3!
n = 5 4 · 3 · 2(1− x)−5 4!
...
n (−1)n+1(n− 1)!

⇒ ln(1 + x) =
∞∑
n=1

(−1)n+1x
n

n

which converges for |x| < 1 (by the Ratio Test).

9.
n f (n)(x) f (n)(0)
n = 0 2x 1
n = 1 2xln(2) ln(2)
n = 2 2x(ln(2))2 (ln(2))2

n = 3 2x(ln(2))3 (ln(2))3

...
n (ln(2))n

⇒ 2x =
∞∑
n=1

(ln(2))n

n!
xn

By the Ratio Test, we see that the series converges for all x.

14. (This is very similar to #13)

n = 0 x− x3 −2 + 8 = 6
n = 1 1− 3x2 −11
n = 2 −6x 12
n = 3 −6 −6

⇒ x− x3 = 6− 11(x+ 2) +
12

2
(x+ 2)2− 6

6
(x+ 2)3

We should simplify this to: 6− 11(x+ 2) + 6(x+ 2)2 − (x+ 2)3, but no further! If we
were to expand this out, we would end up where we started: x− x3. In #13 and #14,
the radius of convergence is ∞, since it is ALWAYS possible to sum four terms.
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16. Similar to 5, 6, 9. We want to see some pattern in the derivatives, then find a formula
for cn. After that, we could use the Ratio Test to determine the radius of convergence.

n f (n)(x) f (n)(−3)
n = 0 x−1 (−3)−1 = −3−1

n = 1 −x−2 −(−3)−2 = −3−2

n = 2 2x−3 2 · (−3)−3 = −2 · 3−3
n = 3 −3 · 2x−4 −3! · 3−4
n = 4 4 · 3 · 2x−5 −4! · 3−5
...
n −n! · 3−(n+1)

There is our formula for f (n)(−3), so putting that into the Taylor Series, we get:

1

x
=
∞∑
n=0

−n!

n! · 3n+1
(x+ 3)n = −

∞∑
n=0

(x+ 3)n

3n+1

To find the radius of convergence, use the Ratio Test to see that ρ = 3.

Exercises #25, 27 are to practice the Binomial Theorem, but we can also
do them from scratch. You won’t need to have the Binomial Theorem
memorized for the exam.

25. Here is a table of the derivatives we get for this function. For clarity, we put the values
of 4n − 5 in the last column- That was found to be the number we stop at in the
numerator. The exceptions to this is when n = 0, 1, so we’ll split those off.

n f (n)(x) f (n)(0) 4n− 5

0 (1− x)1/4 1

1 −1
4
(1− x)−3/4 −1

4

2 − 3
42

(1− x)−7/4 − 3
42

3

3 −7·3
43

(1− x)−11/4 −3·7
43

7

4 −11·7·3
44

(1− x)−15/4 −3·7·11
44

11

Now we can write the series:

1− 1

4
x−

∞∑
n=2

3 · 7 · 11 · · · (4n− 5)

4nn!
xn
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27. Do the same as #25, and you’ll find the pattern to be the following. Notice that a 2
was missing from the factorials, that’s what the fourth column corrects for:

n f (n)(x) f (n)(0)

0 (2 + x)−3 2−3 2 · 2−3 · (1/2)

1 −3(2 + x)−4 −3 · 2−4 −3! · 2−4(1/2)

2 4 · 3(2 + x)−5 4 · 3 · 2−5 4! · 2−5(1/2)

3 5 · 4 · 3(2 + x)−6 −5 · 4 · 3 · 2−6 5! · 2−6(1/2)

⇒ f (n)(0) = (−1)n
(n+ 2)!

2n+4

Therefore, the series becomes the following (remember to divide by n!):

1

(2 + x)3
=
∞∑
n=0

(−1)n(n+ 1)(n+ 2)

2n+4
xn

For Exercises 29-33, use Table 1. We’ll do 33 in detail below, the others
are similar.

33. We want the Maclaurin series for f(x) = x cos(x2/2). We start with the series for
cos(x):

cos(x) =
∞∑
n=0

(−1)n

(2n)!
x2n

so that

cos

(
x2

2

)
=
∞∑
n=0

(−1)n

(2n)!

(
x2

2

)2n

=
∞∑
n=0

(−1)n

(2n)!22n
x4n

Finally, multiply both sides by x:

x cos

(
x2

2

)
=
∞∑
n=0

(−1)n

(2n)!22n
x4n+1

The radius of convergence was ∞, and that hasn’t changed with our transformation.

39. This is a graphing exercise (which won’t be on the exam), however, you should be able
to compute the Maclaurin series quickly (similar to #33):

cos(x2) =
∞∑
n=0

(−1)n

(2n)!
(x2)2n =

∞∑
n=0

(−1)n

(2n)!
x4n = 1− 1

2
x4 +

1

24
x8 + · · ·

You should then plot cos(x2) two, then three terms to see that the more terms you
add, the closer the polynomial comes to looking like cos(x2).
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56. Use the series expansions for cos(x) and ex. For example, the numerator of our expres-
sion is:

1− cos(x) = 1−
∞∑
n=0

(−1)n

(2n)!
x2n = 1− (1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 + · · ·)

Simplifying, the numerator is:

1

2!
x2 − 1

4!
x4 +

1

6!
x6 + · · ·

Looking at the denominator, we have:

1 + x− ex = 1 + x− (1 + x+
1

2!
x2 +

1

3!
x3 +

1

4!
x4 + · · ·) = − 1

2!
x2 − 1

3!
x3 − 1

4!
x4 + · · ·

Divide numerator and denominator by x2 to get:

1− cos(x)

1 + x− ex
=

1
2!
− 1

4!
x2 + 1

6!
x4 + · · ·

− 1
2!
− 3!

x
− 1

4!
x2 + · · ·

Therefore, taking the limit as x = 0, we get −1.

57. Similar to 56, we should get that

sin(x)− x+ 1
6
x3

x5
=

1

5!
− 1

7!
x2 +

1

9!
x4 − · · ·

For #63-66, recognize the sums as the Taylor/Maclaurin series of some
template function.

63. Recognize this one as the exponential:

ex =
∞∑
n=0

xn

n!

so that
∞∑
n=0

(−1)n
x4n

n!
=
∞∑
n=0

(−x4)n

n!
= e−x

4

65. This one is similar to the last one. Go to Table 1 first and see if any of the functions
listed there will work. The only one there with n alone in the denominator is the series
for ln(1 + x), so we use that one:

ln(1 + x) =
∞∑
n=1

(−1)n−1
xn

n

This matches the textbook problem if x = 3/5- Therefore,

∞∑
n=1

(−1)n−1
(3/5)n

n
= ln

(
1 +

3

5

)
= ln(8/5)
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66. We’re back to the exponential:

∞∑
n=0

3n

5nn!
=
∞∑
n=0

(3/5)n

n!
= e3/5

68. In this one, the authors are trying to hide the pattern by expanding the series. If we
write the series in sigma notation:

∞∑
n=0

(−1)n
(ln(2))n

n!
=
∞∑
n=0

(− ln(2))n

n!
= e− ln(2) =

1

2
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