Homework hints: Section 11.3

3,6,13,15,19,21,27,30,32

- 3. Be sure to verify that $x^{-1/5}$ is positive, continuous and decreasing for x > 0.
- 6. Since this is an even numbered problem, we show the solution below. To use the integral test, we see that

$$f(x) = (x+4)^{-1/2}$$

This is a positive, continuous function for $x \neq -4$. It is also decreasing, since

$$f'(x) = -\frac{1}{2}(x+4)^{-3/2} = -\frac{1}{2(x+4)^{3/2}} < 0.$$

We also have:

$$\int_{1}^{\infty} (x+4)^{-1/2} \, dx = \lim_{T \to \infty} \left(\sqrt{x+4} \Big|_{0}^{T} = \infty \right.$$

Therefore, the series diverges.

- 13. Notice that the denominator consists of the odd integers, which are given by the formula 2n-1, if $n=1,2,3,\cdots$.
- 15. Hint: Split this into two series.

$$\sum_{n=1}^{\infty} \frac{1}{n^{3/2}} + 4 \sum_{n=1}^{\infty} \frac{1}{n^2}$$

- 21. Straightforward- We see that the function is decreasing since if n is replaced by n+1, the denominator increases (so the fraction overall decreases). To integrate, use u, du substitution.
- 27. If we look at the graph of the cosine function, we see that:

$$\{\cos(\pi n)\}_{n=1}^{\infty} = \{-1, 1, -1, 1, \cdots\}$$

Therefore, $f(x) = \cos(\pi x)/\sqrt{x}$ is NOT a positive function.

30. Let

$$f(x) = \frac{1}{x \ln(x)(\ln(\ln(x)))^p}.$$

For $x \geq 3$ and p > 0, it is clear that f is decreasing (the denominator increases as x increases). It is also positive and continuous.

To integrate f, let $u = \ln(\ln(x))$ so that by the Chain Rule,

$$\frac{du}{dx} = \frac{1}{\ln(x)} \cdot \frac{1}{x} = \frac{1}{x \ln(x)}$$

We can also substitute for x = 3 $(u = \ln(\ln(3)))$, and as $x \to \infty$, $u \to \infty$:

$$\int_{3}^{\infty} \frac{1}{x \ln(x) ((\ln(\ln(x)))^{p}} dx = \int_{\ln(\ln(3))}^{\infty} u^{-p} du$$

We have already determined that this integral converges for p > 1 and diverges for $p \le 1$.

1

32. The function is

$$f(x) = \frac{\ln(x)}{x^p}$$
 \Rightarrow $f'(x) = -\frac{p\ln(x) - 1}{x^{p+1}}$

which is negative if $p \ln(x) > 1$, or when $\ln(x) > 1/p$, or $x > e^{1/p}$. Therefore, f is eventually strictly decreasing (which is all we need for the test).

The function f is clearly positive and continuous on $[1, \infty)$ as well, so we integrate:

$$\int_{1}^{\infty} \frac{\ln(x)}{x^{p}} dx \quad \Rightarrow \quad + \ln(x) \quad x^{-p} \\ - 1/x \quad x^{-p+1}/(1-p) \quad \Rightarrow \quad \left(\frac{x^{1-p} \ln(x)}{1-p} \Big|_{1}^{\infty} + \frac{1}{1-p} \int_{1}^{\infty} x^{-p} dx \right)$$

The second term (the integral) is known to converge when p > 1 and diverge when $p \le 1$. Checking the first limit:

$$\lim_{T \to \infty} \frac{T^{1-p} \ln(T)}{1 - P} - 0$$

This has a limit when 1 - p < 0, or when p > 1. Therefore, overall, the series converges when p > 1.