Homework hints: Section 11.3
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Be sure to verify that z'/% is positive, continuous and decreasing for x > 0.

Since this is an even numbered problem, we show the solution below. To use the integral
test, we see that
fla) = (z+4)7'7
This is a positive, continuous function for x # —4. It is also decreasing, since
1

/ 1 —
o) = =g+ 7 = g <

0.

We also have:
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Therefore, the series diverges.

Notice that the denominator consists of the odd integers, which are given by the formula
n—1,ifn=123--.

Hint: Split this into two series,
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Straightforward- We see that the function is decreasing since if n is replaced by n + 1,
the denominator increases (so the fraction overall decreases). To integrate, use u,du
substitution.

If we look at the graph of the cosine function, we see that:

{COS(WH)}ZO:I = {_17 L-1,1,--- }
Therefore, f(x) = cos(mx)/\/x is NOT a positive function.

Let
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For z > 3 and p > 0, it is clear that f is decreasing (the denominator increases as z
increases). It is also positive and continuous.

To integrate f, let v = In(In(z)) so that by the Chain Rule,
du 1 1 1
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We can also substitute for z = 3 (u = In(In(3))), and as x — 0o, u — oo:
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We have already determined that this integral converges for p > 1 and diverges for
p <L
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which is negative if pIn(x) > 1, or when In(x) > 1/p, or z > e'/P. Therefore, f is
eventually strictly decreasing (which is all we need for the test).

The function f is clearly positive and continuous on [1,00) as well, so we integrate:
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The second term (the integral) is known to converge when p > 1 and diverge when
p < 1. Checking the first limit:
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This has a limit when 1 — p < 0, or when p > 1. Therefore, overall, the series converges
when p > 1.



