Section 8.1 HW Notes

3, 5, 7, 9, 13, 15

3. Straightforward. The arc length integral you should get is

$$L = \int_0^\pi \sqrt{1 + \cos^2(x)} \, dx$$

We wanted to just set this one up, so that's as far as needed.

- 5. Same idea as (3)- Just set it up.
- 7. For this one, compute the arc length in full. First, compute and simplify the integrand:

$$f(x) = 1 + 6x^{3/2}$$
 \Rightarrow $1 + (f'(x))^2 = 1 + 81x$

Therefore, the integral is straightforward (use u = 1 + 81x):

$$\int_0^1 \sqrt{1+81x} \, dx = \frac{2}{243} (1+81x)^{3/2} \Big|_0^1 = \frac{2(82^{3/2}-1)}{243}$$

9. We "plug-n-chug" - First, find and simplify the integrand, then integrate.

$$f(x) = \frac{1}{3}x^3 + \frac{1}{4}x^{-1} \implies 1 + (f'(x))^2 = x^4 + \frac{1}{2} + \frac{1}{16x^4} = \left(x^2 + \frac{1}{4x^2}\right)^2$$

Now when we take the square root, this will be easy to integrate:

$$\int_{1}^{2} x^{2} + \frac{1}{4x^{2}} dx = \frac{1}{3}x^{3} - \frac{1}{4x}\Big|_{1}^{2} = \frac{59}{24}$$

13. Same idea- Find and simplify the integrand first.

$$y = \ln(\sec(x))$$
 \Rightarrow $1 + (y')^2 = 1 + \tan^2(x) = \sec^2(x)$

So the arc length formula becomes:

$$\int_0^{\pi/4} \sec(x) \, dx = \ln|\sec(x) + \tan(x)||_0^{\pi/4} = \ln(\sqrt{2} + 1) - \ln(1) = \ln(\sqrt{2} + 1)$$

Remember that $\int \sec(x) dx$ will be on your table.

15. The integrand is set up in such a way as to get a perfect square (the algebra is almost identical to #13).

1

$$1 + (y')^2 = \left(\frac{1}{2}x + \frac{1}{2x}\right)^2$$