Selected Solutions, Section 5.3

4. This is a good exercise to understand the "area function" that we described in class.
(a) $g(0)=\int_{0}^{0} f(t) d t=0$, and $g(6)=\int_{0}^{6} f(t) d t=0$ by symmetry (it looks like there is as much positive "area" as negative.
(b) Estimate $g(x)$ for $x=1,2,3,4,5$.

As estimates, we might have something like (respectively):

$$
2.8,4.9,5.7,4.9,2.8
$$

(c) As we go from $x=0$ to $x=3$, we are adding area, so g is increasing.
(d) g increases on $(0,3)$ and decreases on $(3,6)$, so g has a (global) maximum at $x=3$.
(e) The graph of g must have a max at $x=3$, symmetric about $x=3$, and begin and end on the x-axis.
5. For the sketch, the "area function" should be zero at $x=1$, since

$$
g(1)=\int_{1}^{1} t^{2} d t=0
$$

Furthermore, $g(0)=\int_{1}^{0} t^{2} d t=-\int_{0}^{1} t^{2} d t$, so $g(0)<0$. In fact, you should find that the area function is given by

$$
g(x)=\frac{1}{3} x^{3}-\frac{1}{3}
$$

so that $g^{\prime}(x)=x^{2}$.
HINT for 7-18: First, define

$$
g(x)=\int_{a}^{x} f(t) d t
$$

Then, if you have a function of x (call it $h(x)$) as a limit of integration, the integral is actually a composition:

$$
\int_{a}^{h(x)} f(t) d t=g(h(x))
$$

Therefore, the derivative is:

$$
\frac{d}{d x} \int_{a}^{h(x)} f(t) d t=g^{\prime}(h(x)) h^{\prime}(x)=f(h(x)) h^{\prime}(x)
$$

17. Using the hint, we define

$$
g(x)=\int_{1}^{x} \frac{u^{3}}{1+u^{2}} d u
$$

Then

$$
\int_{1-3 x}^{1} \frac{u^{3}}{1+u^{2}} d u=-\int_{1}^{1-3 x} \frac{u^{3}}{1+u^{2}} d u=-g(1-3 x)
$$

Differentiate both sides, and we get:

$$
\frac{d}{d x} \int_{1-3 x}^{1} \frac{u^{3}}{1+u^{2}} d u=-g^{\prime}(1-3 x)(-3)=3 g^{\prime}(1-3 x)=3 \frac{(1-3 x)^{3}}{1+(1-3 x)^{2}}
$$

27. Hint: Multiply the integrand out before antidifferentiating.
28. Hint: Do some algebra first-

$$
\frac{x-1}{\sqrt{x}}=x^{-1 / 2}(x-1)=x^{1 / 2}-x^{-1 / 2}
$$

33. Hint: Multiply out the integrand before antidifferentiating.
34. Hint: Simplify like \#29 above before antidifferentiating.
35. Hint: What is the derivative of $8 \tan ^{-1}(x)$?
36. Hint: $\mathrm{e}^{u+1}=\mathrm{e}^{u} \mathrm{e}^{1}$
37. Given that

$$
F(x)=\int_{x}^{x^{2}} \mathrm{e}^{t^{2}} d t
$$

find $F^{\prime}(x)$.
SOLUTION: Do something like we hinted at before- First define

$$
g(x)=\int_{a}^{x} \mathrm{e}^{t^{2}} d t
$$

where a is any real number. Then

$$
F(x)=\int_{x}^{x^{2}} \mathrm{e}^{t^{2}} d t=\int_{x}^{a} \mathrm{e}^{t^{2}} d t+\int_{a}^{x^{2}} \mathrm{e}^{t^{2}} d t=-\int_{a}^{x} \mathrm{e}^{t^{2}} d t+\int_{a}^{x^{2}} \mathrm{e}^{t^{2}} d t=-g(x)+g\left(x^{2}\right)
$$

so that

$$
F^{\prime}(x)=-g^{\prime}(x)+g^{\prime}\left(x^{2}\right)(2 x)=-\mathrm{e}^{x^{2}}+2 x \mathrm{e}^{x^{2}}
$$

61. The idea here is that, if you have

$$
g(x)=\int_{a}^{x} f(t) d t
$$

then $g^{\prime}(x)=f(x)$ and $g^{\prime \prime}(x)=f^{\prime}(x)$. Therefore, g will be concave down when $g^{\prime \prime}<0$. In this particular case, we have to use the quotient rule and differentiate:

$$
y^{\prime \prime}=\frac{d}{d x}\left(\frac{x^{2}}{x^{2}+x+2}\right)=\frac{(2 x)\left(x^{2}+x+2\right)-x^{2}(2 x+1)}{\left(x^{2}+x+2\right)^{2}}=\cdots=\frac{x(x+4)}{\left(x^{2}+x+2\right)^{2}}
$$

Therefore, $y^{\prime \prime}<0$ where $x(x+4)<0$. Give that a quick sketch- It's an upside down parabola, and we see that $\left.y^{\prime \prime}<0\right)$ when x is in the interval $(-4,0)$.
63. If $f(1)=12, f^{\prime}$ is continuous and $\int_{1}^{4} f^{\prime}(x) d x=17$. What is $f(4)$.

SOLUTION: First, recognize that $f(x)$ is an antiderivative of $f^{\prime}(x)$. Then, by the FTC (Fundamental Theorem of Calculus), we know that

$$
\int_{1}^{4} f^{\prime}(x) d x=f(4)-f(1) \quad \Rightarrow \quad 17=f(4)-12 \quad \Rightarrow \quad f(4)=29
$$

67. We want to use the fact that, if $h^{\prime}(x)<0$, then $h(x)$ is decreasing, and if $h^{\prime}(x)>0$, then $h(x)$ is increasing. Also, if $h^{\prime}(a)=0$ and $h^{\prime}(x)$ goes from negative to positive close to $x=a$, then $h(a)$ is a local minimum. Similarly, for a local max, $h^{\prime}(a)=0$ and $h^{\prime}(x)$ goes from positive to negative.
You now want to think of the graph as the graph of the derivative of some function. That is, $f(t)=h^{\prime}(t)$, and the antiderivative is $\int_{0}^{x} f(t) d t=h(x)$ where $h(0)=0$.

Now, at $t=0,3,7$, the graph of the derivative (f) is going from negative to positive, so at these points, the original function has local minima- We should also exclude $t=0$, since we do not know what happens if $t<0$.

At times $t=1,5,9$, the graph is going from positive to negative, so when the derivative does that, the original function has local maxima; although again we should exclude $t=9$ from that list.
The most positive value of the function would be at $t=9$, so that would be the "global" or "absolute" maximum.
Finally, g is concave down where $f^{\prime}(t)<0$ (or where the graph of f is decreasing). These intervals would be $(1 / 2,2),(4,6),(8,9)$.
69. Since we're told the interval is $[0,1]$, re-write the expression to really look like a Riemann sum. We want the $i^{\text {th }}$ right endpoint to be i / n, and the width of each rectangle to be $1 / n$:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i^{3}}{n^{4}}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{i^{3}}{n^{3}} \cdot \frac{1}{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{3} \cdot \frac{1}{n}=\int_{0}^{1} x^{3} d x=\frac{1}{4}
$$

