
Selected Solutions, Section 5.3

4. This is a good exercise to understand the “area function” that we described in class.

(a) g(0) =
∫ 0
0 f(t) dt = 0, and g(6) =

∫ 6
0 f(t) dt = 0 by symmetry (it looks like there is

as much positive “area” as negative.

(b) Estimate g(x) for x = 1, 2, 3, 4, 5.

As estimates, we might have something like (respectively):

2.8, 4.9, 5.7, 4.9, 2.8

(c) As we go from x = 0 to x = 3, we are adding area, so g is increasing.

(d) g increases on (0, 3) and decreases on (3, 6), so g has a (global) maximum at x = 3.

(e) The graph of g must have a max at x = 3, symmetric about x = 3, and begin and
end on the x−axis.

5. For the sketch, the “area function” should be zero at x = 1, since

g(1) =
∫ 1

1
t2 dt = 0

Furthermore, g(0) =
∫ 0
1 t2 dt = −

∫ 1
0 t2 dt, so g(0) < 0. In fact, you should find that the

area function is given by

g(x) =
1

3
x3 − 1

3

so that g′(x) = x2.

HINT for 7-18: First, define

g(x) =
∫ x

a
f(t) dt

Then, if you have a function of x (call it h(x)) as a limit of integration, the integral is
actually a composition: ∫ h(x)

a
f(t) dt = g(h(x))

Therefore, the derivative is:

d

dx

∫ h(x)

a
f(t) dt = g′(h(x))h′(x) = f(h(x))h′(x)

17. Using the hint, we define

g(x) =
∫ x

1

u3

1 + u2
du

Then ∫ 1

1−3x

u3

1 + u2
du = −

∫ 1−3x

1

u3

1 + u2
du = −g(1− 3x)

Differentiate both sides, and we get:

d

dx

∫ 1

1−3x

u3

1 + u2
du = −g′(1− 3x)(−3) = 3g′(1− 3x) = 3

(1− 3x)3

1 + (1− 3x)2

1



27. Hint: Multiply the integrand out before antidifferentiating.

29. Hint: Do some algebra first-

x− 1√
x

= x−1/2(x− 1) = x1/2 − x−1/2

33. Hint: Multiply out the integrand before antidifferentiating.

35. Hint: Simplify like #29 above before antidifferentiating.

39. Hint: What is the derivative of 8 tan−1(x)?

41. Hint: eu+1 = eue1

57. Given that

F (x) =
∫ x2

x
et

2

dt

find F ′(x).

SOLUTION: Do something like we hinted at before- First define

g(x) =
∫ x

a
et

2

dt

where a is any real number. Then

F (x) =
∫ x2

x
et

2

dt =
∫ a

x
et

2

dt +
∫ x2

a
et

2

dt = −
∫ x

a
et

2

dt +
∫ x2

a
et

2

dt = −g(x) + g(x2)

so that
F ′(x) = −g′(x) + g′(x2)(2x) = −ex

2

+ 2xex
2

61. The idea here is that, if you have

g(x) =
∫ x

a
f(t) dt

then g′(x) = f(x) and g′′(x) = f ′(x). Therefore, g will be concave down when g′′ < 0.
In this particular case, we have to use the quotient rule and differentiate:

y′′ =
d

dx

(
x2

x2 + x + 2

)
=

(2x)(x2 + x + 2)− x2(2x + 1)

(x2 + x + 2)2
= · · · = x(x + 4)

(x2 + x + 2)2

Therefore, y′′ < 0 where x(x + 4) < 0. Give that a quick sketch- It’s an upside down
parabola, and we see that y′′ < 0) when x is in the interval (−4, 0).

63. If f(1) = 12, f ′ is continuous and
∫ 4
1 f ′(x) dx = 17. What is f(4).

SOLUTION: First, recognize that f(x) is an antiderivative of f ′(x). Then, by the FTC
(Fundamental Theorem of Calculus), we know that∫ 4

1
f ′(x) dx = f(4)− f(1) ⇒ 17 = f(4)− 12 ⇒ f(4) = 29
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67. We want to use the fact that, if h′(x) < 0, then h(x) is decreasing, and if h′(x) > 0,
then h(x) is increasing. Also, if h′(a) = 0 and h′(x) goes from negative to positive close
to x = a, then h(a) is a local minimum. Similarly, for a local max, h′(a) = 0 and h′(x)
goes from positive to negative.

You now want to think of the graph as the graph of the derivative of some function.
That is, f(t) = h′(t), and the antiderivative is

∫ x
0 f(t) dt = h(x) where h(0) = 0.

Now, at t = 0, 3, 7, the graph of the derivative (f) is going from negative to positive, so
at these points, the original function has local minima- We should also exclude t = 0,
since we do not know what happens if t < 0.

At times t = 1, 5, 9, the graph is going from positive to negative, so when the derivative
does that, the original function has local maxima; although again we should exclude
t = 9 from that list.

The most positive value of the function would be at t = 9, so that would be the “global”
or “absolute” maximum.

Finally, g is concave down where f ′(t) < 0 (or where the graph of f is decreasing).
These intervals would be (1/2, 2), (4, 6), (8, 9).

69. Since we’re told the interval is [0, 1], re-write the expression to really look like a Riemann
sum. We want the ith right endpoint to be i/n, and the width of each rectangle to be
1/n:

lim
n→∞

n∑
i=1

i3

n4
= lim

n→∞

n∑
i=1

i3

n3
· 1

n
= lim

n→∞

n∑
i=1

(
i

n

)3

· 1

n
=
∫ 1

0
x3 dx =

1

4

3


