Selected Solutions, Section 5.4

10. Hint: Multiply it out first,

$$
\int v\left(v^{2}+2\right)^{2} d v=\int v^{5}+4 v^{3}+4 v d v=\frac{1}{6} v^{4}+x^{4}+2 v^{2}+C
$$

12. $\frac{1}{3} x^{3}+x+\tan ^{-1}(x)+C$.
13. The hint is that $\sin (2 x)=2 \sin (x) \cos (x)$. Using that,

$$
\int \frac{\sin (2 x)}{\sin (x)} d x=\int \frac{2 \sin (x) \cos (x)}{\sin (x)} d x=\int 2 \cos (x) d x=2 \int \cos (x) d x=2 \sin (x)+C
$$

19. You could use Wolfram Alpha (on the web), and type:
```
plot }\operatorname{sin}(\textrm{x})+(1/4)*\mp@subsup{x}{}{\wedge}2+1 and sin(x)+(1/4)*\mp@subsup{x}{}{\wedge}2-
```

29. Hint: Algebraically simplify first!

$$
\frac{4+6 u}{\sqrt{u}}=4 u^{-1 / 2}+6 u^{1 / 2}
$$

31. Hint: Multiply through by x first.
32. Recall that $\int 1 / x d x=\ln |x|$
33. Hint: Rewrite the integrand-

$$
\frac{1+\cos ^{2}(\theta)}{\cos ^{2}(\theta)}=\frac{1}{\cos ^{2}(\theta)}+1=\sec ^{2}(\theta)+1
$$

45. Hint: Rewrite the integrand to get rid of the absolute value bars. That is,

$$
x-2|x|=\left\{\begin{aligned}
3 x & \text { if } x<0 \\
-x & \text { if } x>0
\end{aligned}\right.
$$

Now, the integral can be broken up:

$$
\int_{-1}^{0} \cdots d x+\int_{0}^{2} \cdots d x
$$

49. Hints: The rectangles with which we estimate the area will be horizontal instead of vertical. Therefore, we end up integrating in terms of y instead of x :

$$
\int_{y=0}^{y=2} 2 y-y^{2} d y=\cdots
$$

54. Numerically, that quantity is computed as:

$$
100+n(15)-n(0)=100+n(15)-100=n(15)
$$

and this represents the net change in the bee population in 15 weeks.
61. Hints: You should find that $v(t)=\frac{1}{2} t^{2}+4 t+5$. Remember, to find total distance traveled, we have to compute

$$
\int_{0}^{10}|v(t)| d t
$$

We find from the quadratic formula that $v(t)=0$ only for $t=-4 \pm \sqrt{6}$, both of which are negative. Therefore, the velocity is positive for $t>0$, and we can integrate directly for the total distance:

$$
\int_{0}^{10} \frac{1}{2} t^{2}+4 t+5 d t=\cdots=\frac{1250}{3}
$$

67. From the net change theorem,

$$
C(4000)-C(2000)=\int_{2000}^{4000} C^{\prime}(x) d x=\cdots=\$ 58,000
$$

69. From the net change theorem,

$$
P(1)-P(0)=\int_{0}^{1} P^{\prime}(t) d t=\int_{0}^{1} 1000 \cdot 2^{t} d t=\left.\frac{1000 \cdot 2^{t}}{\ln (2)}\right|_{0} ^{1}=\frac{1000}{\ln (2)} \approx 1443
$$

Adding in the initial population,

$$
P(1)=1443+P(0)=1443+4000=5443
$$

