Exponential and Logarithmic Functions Worksheet

1. Solve each equation:

(a)
$$9^{2y-1} = 27^y$$

(b)
$$\frac{1}{2} = \left(\frac{b}{4}\right)^{1/4}$$

(c)
$$\ln(x+1) - \ln(x) = 1$$

(d)
$$32^t = 16^{1-t}$$

(e)
$$\log_{10}(e^x) = 1$$

(f)
$$e^{e^x} = 2$$

2. Write each expression as a single logarithm. Assume all variables represent positive real numbers.

(a)
$$-\frac{3}{4}\log_x a^6b^8 + \frac{2}{3}\log_x a^9b^3$$

(b)
$$\log_b(2y+5) - \frac{1}{2}\log_b(y+3)$$

(c)
$$(\log_b k - \log_b m) - \log_b a$$

(d)
$$2\log_a(z-1) + \log_a(3z+2)$$

(e)
$$\log_a(pq^2) + 2\log_a(p/q)$$

3. Write each of the following expressions as a sum, difference, or product of logarithms (and simplify if possible). Assume that all variables represent positive real numbers.

(a)
$$\log_5 \frac{5\sqrt{7}}{3}$$

(b)
$$\log_z \frac{x^5 y^3}{3}$$

(c)
$$\log_p \sqrt[3]{\frac{m^5 n^4}{t^2}}$$

(d)
$$\log_6(7m - 3q)$$

(e)
$$\log_3 \frac{4p}{q}$$

4. Differentiate or Integrate, as indicated:

(a)
$$\frac{d}{dx} 3^{x^2 + \sin(x)} =$$

(b)
$$\frac{d}{dx} \log_5(x^2 + e^{3x}) =$$

(c)
$$\frac{d}{dx} \log_x(3x+1) =$$

(d)
$$\frac{\mathrm{d}}{\mathrm{d}x} \sin^{-1}(\mathrm{e}^x) =$$

(e)
$$\frac{\mathrm{d}}{\mathrm{d}x} \ln\left(\frac{1}{x}\right) + \frac{1}{\ln(x)} =$$

(f)
$$\int \frac{x^2 + x + 1}{x} \, \mathrm{dx} =$$

$$(g) \int \frac{x+1}{x^2 + 2x} \, \mathrm{dx} =$$

(h)
$$\int 5^t dt =$$

(i)
$$\int \frac{1}{w \ln(w)} \, \mathrm{dw} =$$