Final Exam Review Solutions

1. $(6.2,32)$ Set up an integral for the volume of the solid obtained by rotating the region defined by $y=$ $\sqrt{x-1}, y=0$ and $x=5$ about the y-axis.

$$
V=\int_{0}^{2} \pi\left(5^{2}-\left(y^{2}+1\right)^{2}\right) d y
$$

2. (5.1, 16) Write the area under $y=\sqrt[3]{x}, 0 \leq x \leq 8$ as the limit of a Riemann sum (use right endpoints).

$$
\Delta x=\frac{8}{n}, \text { Height }_{i}=\sqrt[3]{\frac{8 i}{n}} \Rightarrow \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt[3]{\frac{8 i}{n}} \cdot \frac{8}{n}
$$

3. $(6.2,14)$ Find the volume of the solid obtained by rotating the region bounded by: $y=\frac{1}{x}, y=0, x=1$, $x=3$ about $y=-1$.

$$
V=\int_{1}^{3} \pi\left[\left(\frac{1}{x}+1\right)^{2}-1^{2}\right] d x
$$

4. (6.2, 40) The integral $\pi \int_{2}^{5} y d y$ represented the volume of a solid. Describe the solid.
Rotate the region to the left of \sqrt{y} and to the right of the y-axis about the y-axis $(2 \leq y \leq 5)$.
5. (5.1, 18) Determine a region whose area is equal to the following limit (do not evaluate the limit): $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3}{n} \sqrt{1+\frac{3 i}{n}}$
The region is the area under the curve $y=\sqrt{x}$ for $1 \leq x \leq 4$. You could also say that its under the curve $y=\sqrt{1+x}$ for $0 \leq x \leq 3$.
6. $(5.2,15)$ Write the following limit as a definite integral on the given interval: $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} x_{i} \sin \left(x_{i}\right) \Delta x,[0, \pi]$.

$$
\int_{0}^{\pi} x \sin (x) d x
$$

7. $(6.1,17)$ Find the area between the curves $y^{2}=x$ and $x-2 y=3$.
Taking horizontal rectangles (integrate with respect to y), we see that the rightmost function is $x-2 y=3$. The points of intersection are $(1,-1)$ and $(9,3)$. The area is:

$$
\int_{-1}^{3}(2 y+3)-y^{2} d y=\frac{32}{3}
$$

8. $(5.2,44)$ Write the following difference as a single integral: $\int_{2}^{10} f(x) d x-\int_{2}^{7} f(x) d x$

$$
\int_{7}^{10} f(x) d x
$$

9. (5.2, 46) If $\int_{0}^{1} f(x) d x=2, \int_{0}^{4} f(x) d x=-6$, and $\int_{3}^{4} f(x) d x=1$, find $\int_{1}^{3} f(x) d x .-6-2-1=-9$
10. (Similar to $5.2,39$) If $\int_{0}^{1} f(x) d x=\frac{1}{3}$, what is $\int_{0}^{1} 5-$ $6 f(x) d x ? 5(1)-6 \frac{1}{3}=5-2=3$.
11. $(5.3,9)$ Compute $\frac{d F}{d x}$, if $F(x)=\int_{x}^{2} \cos \left(t^{2}\right) d t$ Note first that $\int_{x}^{2} \cos \left(t^{2}\right) d t=-\int_{2}^{x} \cos \left(t^{2}\right) d t$, which is now in standard form.

$$
-\cos \left(x^{2}\right)
$$

12. $(5.3,13)$ Compute $\frac{d g}{d y}$, if $g(y)=\int_{3}^{\sqrt{y}} \frac{\cos (t)}{t} d t$.

$$
\frac{\cos (\sqrt{y})}{\sqrt{y}} \cdot \frac{1}{2 \sqrt{y}}
$$

13. (5.3, 24 and 7.8) Evaluate: $\int_{-1}^{1} 3 t^{-4} d t$ We note that this integral is improper:

$$
\lim _{T \rightarrow 0^{-}} \int_{-1}^{T} \frac{3}{t^{4}} d t+\lim _{T \rightarrow 0^{+}} \int_{T}^{1} \frac{3}{t^{4}} d t
$$

and neither of these limits exist.
14. $(5.3,50)$ Find $\frac{d y}{d x}$, if $y=\int_{\cos (x)}^{5 x} \cos \left(t^{2}\right) d t$

First, in standard form, (0 was convenient, use any constant):

$$
y=-\int_{0}^{\cos (x)} \cos \left(t^{2}\right) d t+\int_{0}^{5 x} \cos \left(t^{2}\right) d t
$$

so the derivative is:

$$
\frac{d y}{d x}=\cos \left(\cos ^{2}(x)\right) \cdot \sin (x)+\cos \left(25 x^{2}\right) \cdot 5
$$

15. $(5.3,58)$ Evaluate the limit by recognizing the sum as a Riemann sum:

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{1}{n}\left(\sqrt{\frac{1}{n}}+\sqrt{\frac{2}{n}}+\ldots+\sqrt{\frac{n}{n}}\right) \\
\int_{1}^{4} \frac{1}{\sqrt{x}} d x=2
\end{gathered}
$$

16. $(5.2,22)$ Write the following integral as the limit of a Riemann sum (use right endpoints): $\int_{0}^{5}\left(1+2 x^{3}\right) d x$

$$
\lim _{n \rightarrow \infty} \sum i=1^{n}\left(1+\left(\frac{5 i}{n}\right)^{3}\right) \frac{5}{n}
$$

17. (5.2, 37) Given that $\int_{4}^{9} \sqrt{x} d x=\frac{38}{3}$, what is $\int_{9}^{4} \sqrt{t} d t ?-38 / 3$
18. $(6.5,10)$ Let $f(x)=\mathrm{e}^{x}$ on the interval $[0,2]$. (a) Find the average value of f. (b) Find c such that $f_{\mathrm{avg}}=f(c)$.

$$
\begin{aligned}
& f_{\text {avg }}=\frac{1}{2} \int_{0}^{2} \mathrm{e}^{x} d x=\frac{1}{2}\left(\mathrm{e}^{2}-1\right) \\
& \mathrm{e}^{c}=\frac{\mathrm{e}^{2}-1}{2} \Rightarrow c=\ln \left(\frac{\mathrm{e}^{2}-1}{2}\right)
\end{aligned}
$$

19. (5.4,53) The velocity function is $v(t)=3 t-5$. (a) Find the displacement, (b) Find the distance traveled. Displacement for $t=a$ to $t=b$ is $\int_{a}^{b} 3 t-5 d t$ Distance is $\int_{a}^{b}|3 t-5| d t$
20. Exercise 7, pg. 427 (There are some graphs to consider). See the back of the book.
21. (Ch 5 Review, 68) Suppose $h(1)=-2, h^{\prime}(1)=2$, $h^{\prime \prime}(1)=3, h(2)=6, h^{\prime}(2)=5$, and $h^{\prime \prime}(2)=13$, and $h^{\prime \prime}$ is continuous. Evaluate $\int_{1}^{2} h^{\prime \prime}(u) d u . h^{\prime}(2)-$ $h^{\prime}(1)=5-2=3$.
22. (6.1, 24) Find the area between the curves $y=|x|$ and $y=x^{2}-2$. (Also was a HW problem).

$$
\int_{-2}^{2}|x|-\left(x^{2}-2\right) d x=2 \int_{0}^{2} x-\left(x^{2}-2\right) d x=\frac{20}{3}
$$

23. ($5.5,78$) If f is continuous and $\int_{0}^{9} f(x) d x=4$, find $\int_{0}^{3} x f\left(x^{2}\right) d x$. Let $u=x^{2}$, so $d u=2 x d x$ Then:

$$
\int_{0}^{3} x f\left(x^{2}\right) d x=\frac{1}{2} \int_{0}^{9} f(u) d u=2 .
$$

24. Problem 41, p. 439 (Pictures) See the back of the book.
25. (6.1, 46(a)) Find a so that half the area under the curve $y=\frac{1}{x^{2}}$ lies in the interval $[1, a]$ and half of the area lies in the interval $[a, 4]$.

$$
\begin{aligned}
& \int_{1}^{4} \frac{1}{x^{2}} d x=2 \int_{1}^{a} \frac{1}{x^{2}} d x \\
& 1-\frac{1}{4}=2-\frac{2}{a} \Rightarrow a=\frac{8}{5}
\end{aligned}
$$

26. $(6.3,22)$ Set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by $y=x, y=4 x-x^{2}$, about $x=7$. (Shells)

$$
\int_{0}^{3} 2 \pi(7-x)\left(\left(4 x-x^{2}\right)-x\right) d x
$$

27. (CH 8 review, 11) Find the centroid of the region bounded by the curves $y=4-x^{2}$ and $y=x+2$. Area is $9 / 2, M_{y}$ is $-9 / 4, M_{x}$ is $54 / 5$. Overall, $\bar{x}=-\frac{1}{2}$, $\bar{y}=\frac{12}{5}$.
28. (6.4 17-20) Review the Work problems, 17-20, p. 459. See the web site for the writeups.
29. $(6.5,13)$ If f is continuous, and $\int_{1}^{3} f(x) d x=8$, show that f take on the value 4 at least once in the interval $[1,3]$. The average value of f is $8 / 2=4$. By the Mean Value Theorem for Integrals (avg value formula), this means that there is a c in $[1,3]$ such that $f(c)=4$.
30. (Ch 6 Review, 16) Let R be the region in the first quadrant bounded by $y=x^{3}$ and $y=2 x-x^{2}$. Calculate: (a) The area of $R(5 / 12)$ (b) Volume obtained by rotating R about the x-axis ($41 \pi / 105$) (c) Volume obtained by rotating R about the y-axis $(13 \pi / 30)$, (d) The centroid of R.

We did this problem in class. Numerical values are provided.
31. (Ch 8 Review, 13 and 14) Find the centroid: $(2,2 / 3),(14:)(9 / 10,3 / 2)$
32. (Ch 8 Review, 3) Set up an integral to find the arc length of the curve $y=\frac{x^{3}}{6}+\frac{1}{2 x}, 1 \leq x \leq 2$. You should get that

$$
1+\left(y^{\prime}\right)^{2}=\frac{1}{4}\left(x^{4}+2+x^{-4}\right)=\frac{1}{4}\left(x^{2}+x^{-2}\right)^{2}
$$

so that the arc length is:

$$
\int_{1}^{2} \frac{1}{2}\left(x^{2}+x^{-2} d x\right.
$$

33. What does the Theorem of Pappus say? If we have a region R with area A that lies completely to one side of line l, then the volume of the solid of revolution about l is A times the distance that the centroid travels.
34. (Similar to Ch 5 Review, 8(b)) Evaluate: $\frac{d}{d x} \int_{0}^{1} x^{2} \sin (x) \quad d x$ The derivative is zero, since the definite integral is a number. (The derivative of a constant is zero).
35. (Ch 8.3, Example 6, see text) Find the centroid of the region bounded by the curves $y=x^{2}$ and $y=x$.
36. Write the appropriate partial fraction expansion for the following expression (do not solve for the constants):

$$
\frac{1+x}{(x-1)^{2}\left(x^{2}+1\right)}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C x+D}{x^{2}+1}
$$

37. If an integral has $\sqrt{2 x-x^{2}}$, what is the appropriate trigonometric substitution? Complete the square first:

$$
2 x-x^{2}=-\left(x^{2}-2 x+1\right)+1=1-(x-1)^{2}
$$

so substitute $x-1=\sin (\theta)$
38. If an integral has $\sqrt{1-2(x+3)^{2}}$, what is the appropriate trigonometric substitution? Substitute $\sqrt{2}(x+$ $3)=\sin (\theta)$.
39. What is the derivative of $\sin ^{-1}(x) ? \tan ^{-1}(x)$? The derivative of $\sin ^{-1}(x)$ is $\frac{1}{\sqrt{1-x^{2}}}$. The derivative of $\tan ^{-1}(x)$ is $\frac{1}{1+x^{2}}$
40. Let f be differentiable. Integrate by parts: $\int f(x) d x$.

$$
x f(x)-\int x f^{\prime}(x) d x
$$

41. Suppose you are integrating $P(x) / Q(x)$, where P and Q are polynomials. Explain the process by which we integrate this expression. (Consider the degrees of P and $Q)$. First, if the degree of $P \geq$ the degree of Q, perform long division. We now can assume that the degree of P is less than the degree of Q. Factor Q completely, and use partial fractions.
42. What was the Mean Value Theorem for Integrals? The same as the average value formula. If f is continuous on the interval $[a, b]$, then there is a c in the interval such that:

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

43. True or False: Every elementary function has an antiderivative. If it is continuous, this is true (Fund. Theorem of Calc). However, the we may not be able to write the antiderivative as a "simple expression" from a table.
44. If we have $\int_{a}^{b} f(x) d x$, and $f(x)$ has a vertical asymptote at c, where c is in the interval $[a, b]$, explain how we proceed. Proceed by taking two integrals and performing a limit as each approaches c (See a similar previous problem, $\int_{-1}^{1} \frac{3}{t^{4}} d t$.)
45. Evaluate: $\int_{0}^{\infty} t \mathrm{e}^{-s t} d t$, where s is a positive constant. Integration by parts (use a table) gives:

$$
\left.\lim _{T \rightarrow \infty} \frac{-t}{s} \mathrm{e}^{-s t}\right|_{0} ^{T}+\left.\lim _{T \rightarrow \infty} \frac{-1}{s^{2}} \mathrm{e}^{-s t}\right|_{0} ^{T}
$$

Use L'Hospital's rule to compute the limits to get that the first term is 0 , and the overall result is $1 / s^{2}$.
46. What does L'Hospital's rule say? See page:
47. Evaluate:
(a) (Ch 7 Review, 4) $\int \frac{\sec ^{2}(x)}{1-\tan (x)} d x$ Let $u=$ $\tan (\theta) .-\ln |1-\tan (\theta)|+C$
(b) (Ch 5 Review, 20) $\int_{-1}^{1} \frac{x^{5}+x^{3}+x}{x^{4}+x^{2}+1} d x$ Note that simplifying the integrand gives: $\int_{-1}^{1} x d x=$ 0 .
(c) (Ch 7 Review, 7) $\int \tan ^{7} x \sec ^{3} x d x$ Keep a $\sec (x) \tan (x)$ out with $d x$, and take $u=\sec (x)$. You get $\int\left(u^{2}-1\right)^{3} u^{2} d u$, which we have to multiply out. Final answer: $\frac{1}{9} \sec ^{9}(x)-\frac{3}{7} \sec ^{7}(x)+$ $\frac{3}{5} \sec ^{5}(x)-\frac{1}{3} \sec ^{3}(x)+C$
(d) $(5.5,31) \int \frac{d x}{x \ln (x)}$ Let $u=\ln (x)$, so $\ln |\ln | x|\mid+$ C
(e) (Ch 7 Review, 6) $\int \frac{1}{y^{2}-4 y-12} d y$ Use partial fractions to get $\frac{1}{8} \ln |y-6|-\frac{1}{8} \ln |y+2|+C$
(f) $(5.4,9) \int(1-t)\left(2+t^{2}\right) d t$ Multiply it out, $2 t-$ $t^{2}+\frac{1}{3} t^{3}-\frac{1}{4} t^{4}+C$
(g) $(5.4,25) \int u(\sqrt{u}+\sqrt[3]{u}) d u$ Simplify before integrating. $\frac{2}{5} u^{5 / 2}+\frac{3}{7} u^{7 / 3}+C$
(h) (Ch 7 Review, 33) $\int_{1}^{\infty} \frac{1}{(2 x+1)^{3}} d x 1 / 36$.
(i) $(5.4,28) \int_{-1}^{2}\left|x-x^{2}\right| d x$ Split the integral like we do in area problems: $\int_{-1}^{0} x^{2}-x d x+\int_{0}^{1} x-$ $x^{2} d x+\int_{1}^{2} x^{2}-x d x$ to get $11 / 6$
(j) (Ch 7 Review, 36) $\int_{1 / 4}^{4} \frac{\mathrm{e}^{1 / x}}{x^{2}} d x$ Let $u=1 / x$ and substitute. $e-e^{1 / 4}$
(k) $\left(\operatorname{Ch} 7\right.$ Review, 29) $\int \frac{x^{2}}{\left(4-x^{2}\right)^{3 / 2}} d x$ Let $x=$ $2 \sin (\theta)$ and substitute.

$$
\frac{x}{\sqrt{4-x^{2}}}-\sin ^{-1}(x / 2)+C
$$

(l) $($ Ch 7 Review, 26$) \int \frac{1}{1+\mathrm{e}^{x}} d x$ Let $u=\mathrm{e}^{x}$, so $\ln (u)=x$ and $(1 / u) d u=d x$ and substitute. You will then need to do partial fractions, and get:

$$
x-\ln \left(1+\mathrm{e}^{x}\right)+C
$$

(m) (5.5, 22) $\int \frac{\tan ^{-1}(x)}{1+x^{2}} d x$ Let $u=\tan ^{-1}(x)$. $\frac{1}{2}\left(\tan ^{-1}(x)\right)^{2}+C$
(n) $(5.5,70) \int_{-a}^{a} x \sqrt{x^{2}-a^{2}} d x$ You should get 0 .
(o) $(5.5,56(+$ section 7.8$)) \int_{0}^{2} \frac{d x}{(2 x-3)^{2}} d x$ Does not exist (take the limit as $T \rightarrow \frac{3}{2}$).
(p) (Ch 7 Review, 13) $\int \sin ^{2} x \cos ^{5} x d x$ Pull out a $\cos (x)$ to keep with $d x$.

$$
\frac{1}{3} \sin ^{3}(x)-\frac{2}{5} \sin ^{5}(x)+\frac{1}{7} \sin ^{7}(x)+C
$$

(q) $(5.5,12) \int \frac{x}{x^{2}+1} d x \frac{1}{2} \ln \left(x^{2}+1\right)+C$
(r) (Ch 7 Review, 19) $\int \frac{1}{\sqrt{x^{2}-4 x}} d x$ First complete the square then substitute $x-2=\sec (\theta)$. You should end up with $\int \sec (\theta) d \theta$, which will be given on the exam... Be sure you can go back to x.
(s) (Ch $7.5,36) \int \sin (4 x) \cos (3 x) d x$
(t) (Ch 7 Review, 5) $\int x^{4} \ln (x) d x$ Integrate by parts with $u=\ln (x), d v=x^{4} d x$.

$$
\frac{1}{5} x^{5} \ln (x)-\frac{1}{25} x^{5}+C
$$

