Hint Sheet: 7.5

- 1. Let $u = \sin(x)$
- 2. $\frac{1 \cos(x)}{\sin(x)} = \frac{1 \cos(x)}{\sin(x)} \frac{1 + \cos(x)}{1 + \cos(x)} = \frac{\sin(x)}{1 + \cos(x)}$
- 3. Let $u = \tan^{-1} y$ and do u, du substitution.
- 4. Integrate by parts with x^3 in the middle column.
- 5. Pull out cos(x) to keep with dx.
- 6. Let $u = \cos(x)$ and do u, du substitution.
- 7. Let $x = 3\sin(\theta)$
- 8. This is very similar to a $\sin(\theta)$ substitution. If we let $u=x^2$, we'll get the right form.
- 9. Because of the x in the numerator, try $u = 1 x^2$.
- 10. Let $x = \sin(\theta)$.
- 11. Partial Fractions: $\frac{A}{t-3} + \frac{B}{(t-3)^2} = \frac{2t}{(t-3)^2}$
- 12. Partial Fractions: $\frac{A}{x-5} + \frac{B}{x+1} = \frac{x-1}{(x-5)(x+1)}$
- 13. Complete the square: $x^2 4x + 5 = (x-2)^2 + 1$, then let u = x 2.
- 14. First, let $u=x^2$, then complete the square so that the denominator is: $(u+\frac{1}{2})^2+\frac{3}{4}$. Finally, let $w=u+\frac{1}{2}$ and see the w^2+a^2 in the denominator.
- 15. First write e^{x+e^x} as $e^x e^{e^x}$. Then let $u = e^x$.
- 16. Let $u = \sqrt[3]{x}$. Then $u^3 = x$, and $3u \ du = dx$, and substitute. Integrate by parts using a table.
- 17. Use integration by parts with $u = \ln(1+x^2)$ and dv = dx.
- 18. You probably tried $u=\ln(x)$ and got to the integral of $\frac{\sqrt{1+u}}{u}$. Now let $w=\sqrt{1+u}$ so that $w^2=1+u$, $2w\ dw=du$, etc.
- 19. Integrate by parts using a table with t^3 in the middle column.
- 20. Integrate by parts once using $u = \sin^{-1}(x)$, dv = x. To integrate what's remaining after the first step, use $x = \sin(\theta)$.
- 21. Let $u = 1 + \sqrt{x}$ so that $x = (u 1)^2$, and dx = 2(u 1) du
- 22. Expand by multiplying \sqrt{z} through.
- 23. First, long division yields: $3 + \frac{6x+22}{x^2-2x-8}$ To integrate the second term, using partial fractions.
- 24. Let $u = x^3 2x 8$.
- 25. Let $u = \ln(\sin(x))$. Note that $du = \cot(x) dx$.
- 26. Let $u=\sqrt{at}$ so that $u^2=at$ and $2u\ du=a\cdot dt$, then integrate by parts.
- 27. By factoring, $x^3 + x^2 2x = x(x+2)(x-2)$, which is negative from -3 to -2, and from 0 to 1. So separate the integral into 4 pieces.
- 28. First complete the square under the radical sign: $1+x-x^2=\frac{5}{4}-(x-\frac{1}{2})^2$. Now let $u=x-\frac{1}{2}$ and use a $\sin(\theta)$ substitution.
- 29. First multiply the top and bottom by $\sqrt{1+x}$ as in Example 5.
- 30. Let $u = \sqrt{2x-1}$, so $u^2 = 2x-1$, and $2u \ du = 2 \ dx$, $2x+3=u^2+4$, etc.
- 31. Do long division first, so $\frac{3w-1}{w+2} = 3 \frac{7}{w+2}$
- 32. $x^3 8 = (x 2)(x^2 + 2x + 4)$, then do partial fractions.
- 33. Integrate by parts twice to get $\int e^{2x} \sin(3x) dx$ on both sides of the equation, etc.
- 34. Let $u = \cos^2(x)$. Recall that $2\sin(x)\cos(x) = \sin(2x)$.

- 35. This is something we didn't talk about in class (Odd functions), so skip it (you can look it up, 5.5.7(b)))
- 36. Use 7.2.2(a) (Table 2)
- 37. Write in terms of sines and cosines and simplify.
- 38. Pull out a $\sec^2(x)$ to keep with dx.
- 39. Let $u=1-x^2$. Once you've written the integral in u, you might find $w=sqrtu,\ w^2=u,\ 2w\ dw=du$ a handy next substitution.
- 40. Complete the square: $4y^2 4y 3 = (2y 1)^2 2^2$
- 41. Integrate by parts, noting that the antiderivative of $\tan^2(\theta)$ is the antiderivative of $\sec^2(\theta) 1$ which is $\tan(\theta) \theta$.
- 42. As in (41), take the antiderivative of $\tan^2(4x)$ by first writing $\sec^2(4x) 1$.
- 43. Let $t=x^3$, so that $dt=3x^2\ dx$. Note that that leaves another x^3 unaccounted for. Substitute t for that x^3 , also.
- 44. Let $u = e^x$ so that $\ln(u) = x$, and $\frac{1}{u} du = dx$. Now do partial fractions on what remains.
- 45. Split into two fractions: $\frac{x}{x^2+a^2} + \frac{a}{x^2+a^2}$.
- 46. Let $u = x^2$, then partial fractions.
- 47. Use half-angle identities, and multiply everything out (kind of long!)
- 48. Integrate by parts with $u = \tan^{-1}(x)$, $dv = x^2 dx$.
- 49. Let $u = \sqrt{4x+1}$, then use partial fractions.
- 50. Let $u = \sqrt{4x+1}$, then use partial fractions (you'll have 4 constants to solve for).
- 51. Let $2x = \tan(\theta)$.
- 52. Trick: $\frac{1}{x(x^4+1)} = \frac{x}{x^2(x^4+1)}$, Let $u=x^2$. Note: You don't need to do the trick, it just makes it a little easier.
- 53. Skip this one (unless you want to read about hyperbolic functions- look it up in the Appendix).
- 54. Multiply it out.
- 55. Let $u = \sqrt{x+1}$
- 56. Let $t = \sqrt{x^2 1}$, arriving at $\int \ln(t^2 + 1) \ dt$ Use integration by parts.
- 57. Let $u = \sqrt[3]{x+c}$
- 58. Integrate by parts first, then do long division.
- 59. Let $u = e^x$. Note that $x = \ln(u)$.
- 60. Let $u = \sqrt[3]{x}$.
- 61. Let $u = x^5$.
- 62. Let u = x + 1.
- 63. Rewrite in sines and cosines, pull out a cosine.
- 64. Let $u = \tan(x)$.
- 65. Multiply numerator and denominator by $\sqrt{x+1} \sqrt{x}$.
- 66. Long division followed by partial fractions.
- 67. Let $u = \sqrt{t}$, followed by integration by parts.
- 68. Let $u = e^x$. Again, note that $x = \ln(u)$.
- 69. Let $u = e^x$.
- 70. Try integration by parts with $u = \ln(x+1)$.
- 71. Partial Fractions (4 constants).
- 72. $u = \sqrt[6]{t}$. Note $u^6 = t$.
- 73. Partial fractions (3 constants).
- 74. Let $u = e^x$.
- 75. First use Table 2 to re-write $\sin(2x)\cos(3x)$. Then multiply out and use Table 2 again.
- 76. Integration by parts.