Homework Solutions: Chapter 7

Section 7.1

1. Integrate by parts:

u = In(z) dv =z dx
du = % dx v = %502
so that
1, 1
zln(z) de = zz*In(z) — = [ z dx
2 2
1 1
= 59:2 In(z) — sz +C

5. Use a table: /xsin(4x) dz is:

+ |z sin(4x)
— | 1] =7 cos(4x)
+ | 0 [ —1g sin(4x)

1 1
7% cos(4x) + 16 sin(4x) + C

6. Let

xsin~

Now let u = 22, du = 2z dz, and the final result

is:
rsintz+ (1—23)"V24C

8. Use a table: /x2 sin(az) dx is:

+ [ 22 sin(ax)

— | 22 [ —% cos(ax)
T .

+ | 2 | —z5sin(ax)

—| 0 [ 5 cos(ax)

2

T 2z 2
— cos(ax) + = sin(az) + o cos(ax) + C

10. Use a table: /tht dt is:

24.

28.

52.

+ 1 [e
— 32 ] ¢
+ ] 6t | €
—| 6 |é
+1 0 |é€

e’ (t° — 3t + 6t — 6)

1 1 2
5:102 tan™!(z) — 5/30—

1+ 22

By long division, the integral above becomes:

1
1—-—d
/ 1422 o

so the solution is:

1 1 1
§$2 tan™! () — 37+ 5 tan™!(z) + C

¢
e’sin(t — s) ds There are several ways you

0
could’ve gone about this problem. Note that in
any event, we’ll use a technique like Example 4,
p. 472.

+ | sin(t—s) |e€*
— | —cos(t—s) | e°
+ | —sin(t —s) | €°

¢
2/ e’sin(t — s) ds = e°(sin(t — s) + cos(t — s))
0
so that the final answer is:
1 1

1
iet ~3 cos(t) — 3 sin(t)

Using shells, the volume is:

1
/ 2rrx(e” —e™%) dx
0

Note that we have to integrate xe® and xe™ by
parts to get a final answer of %’T

Section 7.2

. Pull out a cos(z) to put with dz, and make a u, du

substitution. You should get:

1
/\/5 u’ (1 —u?) du
1

(NOTICE the bounds!) The answer is then g



15.

18.

41.

42.

52.

Pull out a cos(x) to put with dz, and make a u, du
substitution. You should get:

/01(1 —u?)? du

8

for a final answer of 3%

Pull out a sin(z) to keep with dz, and do a u,du
substitution to get:

/(1 — w22 (<1) du

Switching back to x, we get:

%(cos(:rx))”2 - ;(cos(x))s/2 +C

Rewriting in terms of sines and cosines, you
should get:
5(6
/ cos 9) a0
sin(6)

Now pull out a cos(f) to put with df, do a u,du
subsitution to get:

/ (1—u?)?

Converting back to 0, we get:

du

1
In | sin(0)| — sin®(6) + 1 sin(9) + C
Use Table 2 to get

1
5 /cos(Bm) —cos(7x) dx
so that the answer is:

1 . 1 .
g sin(3z) — 1 sin(7x) + C

Again use Table 2 to get

1 . .

5 sin(4z) + sin(2z) dx
so that the answer is:

1 1
~3 cos(4x) — 1 cos(2x) + C

First, we’ll list the answers:

54.

60.

Using the identities: cos?(z) = 1 — sin®(x) and
cos(2x) = 1 — 2sin®(x), we can see that all of
the functions above are all shifted (up and down)
versions of 1sin®(z). (Which is what we mean
when we say ” Any two antiderivatives of the same
function differ by a constant”)

Break up the integral at & and evaluate. You get:

L LT _ V3
6 2

The volume is (by washers):

w/2
/O 7 (12— (1 - cos(2))?) do

Integrating (be sure to change the bounds), we
get:

7.‘.2

o _ L
Ty

Section 7.3

Let = 3tan(d). Be sure to put in dr =
3sec?(f) df. Then the integral should simplify
to:

33/tan3(9) sec(d) d

We have some options now. We can either take
out a sec(f) tan(f) to keep with df, or write ev-
erything in sines and cosines first, then try a u, du
subsitution. Either way, the answer is:

1
5 (@ +9)3/2 — 922 +9)2 + C

Let x = sin(f). Then dz = cos(8) df, and the
integral simplifies to:

w/3
43 / sin®(0) df
0

(NOTE the bounds!) Converting to u,du we get:

12
74‘3/ (1 —u?) du
1

so the answer is: 42

NOTE: You could’ve also avoided trig substitu-
tion altogether by initially letting u = 16 — 22, so
22 =16 —u, and du = —2z dx

(NOTE: I will give you [ ¢sc(x) dx on the exam):
Let = v/3tan(f). Then dz = v/3sec?(0) db
Then the integral simplifies to:

1 1
7 /CSC(Q) df = 7 In | cse(f) — cot(0)| + C



10.

23.

26.

34.

and converting back to = (use a triangle),

1’2

\/3

Let = a-sec(f) (remember to substitute for dz),

and we get (after simplification):

pe sin?(#) cos(0) db

integrating and going back to x, we get:
(xz _ a2>3/2

3a?x3 +C

Complete the square to get things in the right
form:
20 — 22 =1— (x — 1)

So that x — 1 = sin(f) and simplify
to [ cos?(0)df.  Integrating and substituting
sin(20) = 2sin(0) cos(#), then using a triangle,
we get:

1

§sin_1(x71 xfl W2z —a22+C

Again, we first complete the square,
4 —a? =4 — (x—2)?

so that the integral becomes

2
/ T
Vi — (xz—2)?
Then z — 2 = 2sin(), 22 = (2sin(f) + 2)%, and
dx = 2 cos(0) db, so simplifying after substitution
will give:

4 / (sin®(0) + 2sin(0) + 1) df

To go back to x, recall that sin(20) =
2sin(f) cos(f), and use a triangle. The answer

is:
Gsin! (%72>74\/4mfm27 2Vie—a2 1+ C
(If you need a brush up, Hyperbolas are graphed
in Appendix C, page A20) From the picture of a
hyperbola, we get that the area is given by:

3
2/ ;\/12—4dx
2

Subsitution of x = 2sec(f) (remember to substi-
tute for da!) gives (when simplified, and leaving
off the bounds):

12/tan2(9) sec(6)do

10.

17.

18.

There are a number of things we can do here, here
is one approach:

12/(sec (0) — 1) sec(8)db

12/Sec (6) — sec(0) db

The integral of sec(x) would be provided for you,
and the integral of sec®(z) is done in Example 8,
p. 481. Simplifying, we get:

6[sec() tan(f) — In|sec(d) + tan(0)|]

Converting back to x and applying the bounds:

T 2
6| ———-In|=- + ——
[m mug

which is approximately 4.288

Section 7.4

A n B
2¢x 4+ 3

rz—1

A n B n C n D
3245 (3z+5)2 (3z+5)3 z+2

Dz+FE
241 +
Hx+1

A B C
z—2 + (x—2)2 + éx—2)3 +
Fx+ +
2x24+5x+7 222 +52+7)2

First, note that:
22 +1 B z+1
r2—-1 z(z—1)

After partial fractions, we integrate:

1 2
/1——+—da;
+1

which gives:

(z—1)

+C
]

r—In|z|+2Injlz -1+ C=a+

Two cases: If a = b, and a # b.

If a = b, then we have / ﬁ in which case,
z+a

we integrate by letting u = x + a and do a u,du
substitution which gives:

1
xr+a




21.

22.

29.

39.

44.

46.

If @ # b, then partial fractions gives:

1 / 1 B 1
b—a) z+a x+0b

and the answer is:

dz

1 z+a
| -1 b)+C = ——I1 C
b_a(n|x+a| nle+bl)+ b—anJc—i—bJr
Partial Fractions gives:
/2 2 N 9/5 1/5
1Yy y+t2 y—=3

so the final answer is (after simplification)  In 3

Partial fractions gives:

3
—-1/2
=5+
2 T

the final answer is

1/6
x + 2

1/3
r—1

2 1
1 — —In(5) ~ 0.6551
n( 3>+6n()

Perform long division first- Then integrate:

1
x
- ——d
/0 i
so the final answer is & — £ In(2)

First, the partial fractions gives:

1
/2 1/2 de
r—1 x+1

-1

x2

The final answer (after simplification) is:

1 1

x+2

r—1
x+1

REC

Let u = vz +1,s0 z =u?—1 and dz = 2u du.
Therefore, we get:

2
/ g /
(u? — Nu
and the final answer is:

njvVe+1-1—-In|vVz+1+1]+C

Let u = ¢/, so u®> = x and 3u? du = dx. After
substitution, we get:

/

After long division and integration, the final an-

swer is )
In(2) — =
3(11( ) 2)

du
u? —1

3u?

d
1+u Y

62.

16.
18.

20.

22.

24.
26.

28.

® o e

Complete the square, 22 — 6z + 8 = (z — 3)? — 1
which is positive for 5 < x < 10, so (subsituting
du

u=x—3),
7
/2 u? —1

which we could do partial fractions on. The an-
swer is (after simplification) In 2 ~ 0.4055

Section 7.5 (Selected evens)
In|l —cos(z)|+ C
4In(2) — 12

—sin(cos(z)) + C
sinfl(xQ/\/g) +C

N[

[
=

. =L In(5)

3

CLtanTH(Z (224 3) + C

V3 V3
3eVE(x2/3 — 2213 4 2) + C

V1+1 1
2y/1+In|z|+1In <1+ln:x+1> +C
+ In|x| —

[(21:2 —1)sin !} z) + 21— 12} +C

| =

52
55

In|z3 — 2z — 8|+ C

—2\/;05(\/%) + % sin(vat) + C

5 (1 1
— sin (E(Zx—1))—}—1(2:6—1)\/1—1—96—352—1—0

8

V2 —1-2tan ' (322 — 1)+ C

1

Z5 @O

1 1 1
- In |$_2|_ﬂ In(z%+2z+4)— —— tan~}(

43

. —sin" (2 cos?(z)) + C

3
1

. —2cos(z) — & cos(Tz) + C

5
12



40.
1
§ln‘2y—l+\/4y2—4y—3‘+0‘

42. tan(4z) — x4+ C

44. x —2Inle” - 1|+ C
46. 1oz In|(2? — a?)/(2* 4+ a?)| + C
48.
1 1 1
gx?’ tan~!a — 6332 + 6 In(z?+1)+C
50. Let A=+v/4x+1+1and B = 4z + 1—1. Then

the solution is:

2In(A) — 2 —2In(B) — % +C

A

Section 7.8

13. We can use u, du substitution to get that:

ze™® dr = 1 e “du= ie @?
2 2

S0
o0 2
/ ze T dx =
— 00
0 2 t 2
lim re™ " dr+ lim ze " dr =
t——o0 t t—o0 0
0 t
-1 -1
lim [ —e + lim e
t——o0 2 " t—o0 2 0
which is:
-1 n 1 0
2 2

/ e dx

For —_—
0. (z+2)(z+3)

discontinuity. Just integrate using partial frac-
tions and take the limit:

15. there are no points of

dz x+2
O n|z42|—In 243 =
| s = e “x+3’
so that
i [
t—oo o (z+2)(z+3)
t+2 2
tILH;O <1n ti3' —In (§> ) =1In(1) — In(2/3)

= —1In(2/3)

19. First, note that

As t — —oo, by L’Hospital’s rule:

11 1
lim 2—2 = lim —2- =0
t—00 672t t—00 672t

giving us a final answer of e?/4

26. One way to integrate is to let u = In(z), du =

% dx, e* = x, so that:

/ In(z)

3

Now, we convert back to = and evaluate the lim-

its: ,
. 1 1
Jim (=5 njz] - 7) )

To compute this limit, we look at:

1/t

In(t)
1 =
im Jim <

t—oo {2

=0

so overall, the limit is %.

1
1
33. Note that we already know that / — dz does

4

o T

3

not exist, so / —; dz does not exist, either.
_92 X

36. First, we see that, by partial fractions:

[ [ ame )
—————doz = — —— dz
0 224+x—6 5 0x+3

However, the last integral has a discontinuity at
x = 2, so that is the one we inspect:

S|
/ /—dx+/—dm
0 2 xr—2

But both of those integrals are divergent (either

:6—2

check directly or recall that f ! ; dx was diver-
gent).

40. First, integrate by parts to get that:

/ In(z)

Jz

dr = 2v/xIn(z) — 4/x



42.

o1.

o8.

Now compute the limit:

1

tLH(% 2vzIn(z) — 4z,

which means we need to examine:

. In(t) ) 1/t .
Jm, 7 = i gy — i, V=0

so overall, the answer is —4.

t—o0 0

s ¢
/ e /2 dr = lim (—26_90/2‘ =
0

To get a final anser of 2e

First, you should look at the integral and guess
that it probably converges, since the denomina-
tor has an exponential in it. Therefore, to use
the Comparison Theorem, we look for a larger
function that we know converges. To make the
expression larger, we can make the denominator
smaller:

1 < 1
T+ 627; - eTI
and we know that floo e~ 2% dx converges. Note
that even though the following statement is also

true:
1 1

T+e2 g
but this says nothing about convergence or diver-
o . . . o0
gence of our original integral, since fl (1/z) dx
diverges.

Let v = In(z), du = % dz, and change the
bounds. Then:

/edex/lmupdu

so the integral converges if p > 1, diverges other-
wise.



