### Functions of Several Variables

Understanding from three points of view: Geometric, Algebraic, and a little Numerical

$$z = f(x, y)$$

$$w = f(x, y, z)$$

The domain of z = f(x, y) is the set of (x, y) for which f is defined.

The domain of z = f(x, y) is the set of (x, y) for which f is defined.

# Example

Find the domain:  $f(x,y) = \sqrt{y} + \sqrt{25 - x^2 - y^2}$ 

The domain of z = f(x, y) is the set of (x, y) for which f is defined.

# Example

Find the domain: 
$$f(x,y) = \sqrt{y} + \sqrt{25 - x^2 - y^2}$$

• From  $\sqrt{y}$ ,  $y \ge 0$ .

The domain of z = f(x, y) is the set of (x, y) for which f is defined.

# Example

Find the domain:  $f(x,y) = \sqrt{y} + \sqrt{25 - x^2 - y^2}$ 

- From  $\sqrt{y}$ ,  $y \ge 0$ .
- From the square root,  $x^2 + y^2 < 25$ .

Plot the domain, then we'll plot the surface.



# Example: Numerical Chart

Apparent temperature, given actual temp and humidity is below.

| Relative | humidity | (%) |
|----------|----------|-----|
|----------|----------|-----|

| 20 | 30                   | 40                               | 50                                            | 60                                                         | 70                                                                    |
|----|----------------------|----------------------------------|-----------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------|
| 77 | 78                   | 79                               | 81                                            | 82                                                         | 83                                                                    |
| 82 | 84                   | 86                               | 88                                            | 90                                                         | 93                                                                    |
| 87 | 90                   | 93                               | 96                                            | 100                                                        | 106                                                                   |
| 93 | 96                   | 101                              | 107                                           | 114                                                        | 124                                                                   |
| 99 | 104                  | 110                              | 120                                           | 132                                                        | 144                                                                   |
|    | 77<br>82<br>87<br>93 | 77 78<br>82 84<br>87 90<br>93 96 | 77 78 79<br>82 84 86<br>87 90 93<br>93 96 101 | 77 78 79 81<br>82 84 86 88<br>87 90 93 96<br>93 96 101 107 | 77 78 79 81 82   82 84 86 88 90   87 90 93 96 100   93 96 101 107 114 |

• What is the value of f(95,70)? What does it mean?

- What is the value of f(95,70)? What does it mean?
- ② For what h is f(90, h) = 100?

- What is the value of f(95,70)? What does it mean?
- ② For what h is f(90, h) = 100?
- **3** For what T is f(T, 50) = 88?

- What is the value of f(95, 70)? What does it mean?
- ② For what h is f(90, h) = 100?
- **3** For what T is f(T, 50) = 88?
- What is the meaning of the function I(h) = f(80, h)?

Given z = f(x, y), we can fix the value of z, and graph **level curves** of the form:

$$f(x, y) = k$$

In weather maps, the level curves for pressure are called isobars





The level curves should be equal distance apart. For example, in the pressure map, the pressure levels were

$$1004, 1008, 1012, 1016, \cdots$$

If a surface is steep, the level curves are tightly packed.

The level curves should be equal distance apart. For example, in the pressure map, the pressure levels were

 $1004, 1008, 1012, 1016, \cdots$ 

If a surface is steep, the level curves are tightly packed. If a surface is shallow, the level curves are far apart.

The level curves should be equal distance apart. For example, in the pressure map, the pressure levels were

$$1004, 1008, 1012, 1016, \cdots$$

If a surface is steep, the level curves are tightly packed. If a surface is shallow, the level curves are far apart.

The level curves can be shown in two or three dimensions (See Sect 14.1, figure animations from the text)