## Group Work, Section 10.1

1. Give a parameterization for the line that moves between the points (1,2) and (-3,-6).

2. Are any of the following graphs (in the (x, y) plane) actually a line? Show that your answer is true by finding either y as a function of x, or x as a function of y:

(a) 
$$x = t^2$$
,  $y = t^3$ ,  $-1 \le t \le 1$ .

(b) 
$$x = t - 1, y = t + 4$$

(c) 
$$x = e^t - 1, y = e^t + 4$$

(d) 
$$x = 1 + 3t, y = 2 - t^2$$

3. Try to plot the following set of parametric equations:

$$x(t) = \sin(2t)$$
  $y(t) = \cos(t)$   $0 \le t \le 2\pi$ 

4. If x, y are each plotted below, find parametrizations in t for them, and plot the graph of the parametric equations.



Figure 1: Graphs of x (left) and y (right), where each is in terms of t.

5. Give a parameterization of the path of a particle of the form:

$$x(t) = a_1 \cos(a_2 t)$$
  $y(t) = a_3 \sin(a_4 t)$   $0 \le t \le 2\pi$ 

so that the particle moves around a circle three times CW (with a radius of 2) starting at (-2,0).

1

What does the curve look like if  $a_1 = 1$ ,  $a_3 = 3$ ,  $a_2 = a_4 = 1$ ?