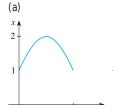
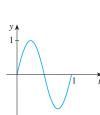
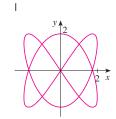
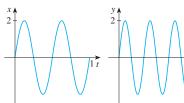
19–22 Describe the motion of a particle with position (x, y) as t varies in the given interval.

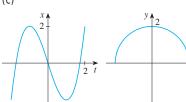

19.
$$x = 3 + 2 \cos t$$
, $y = 1 + 2 \sin t$, $\pi/2 \le t \le 3\pi/2$

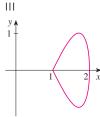

20.
$$x = 2 \sin t$$
, $y = 4 + \cos t$, $0 \le t \le 3\pi/2$

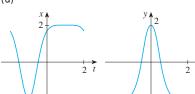

21.
$$x = 5 \sin t$$
, $y = 2 \cos t$, $-\pi \le t \le 5\pi$

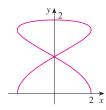
22.
$$x = \sin t$$
, $y = \cos^2 t$, $-2\pi \le t \le 2\pi$


- **23**. Suppose a curve is given by the parametric equations x = f(t), y = g(t), where the range of f is [1, 4] and the range of g is [2, 3]. What can you say about the curve?
- **24.** M atch the graphs of the parametric equations x = f(t) and y = g(t) in (a)-(d) with the parametric curves labeled I-IV. Give reasons for your choices.

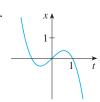




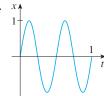


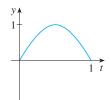


(c)


25–27 Use the graphs of x = f(t) and y = g(t) to sketch the parametric curve x = f(t), y = g(t). Indicate with arrows the direction in which the curve is traced as t increases.

25.



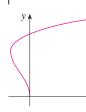

26.

27.

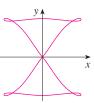
28. M atch the parametric equations with the graphs labeled I-VI. Give reasons for your choices. (Do not use a graphing device.)

(a)
$$x = t^4 - t + 1$$
, $y = t^2$

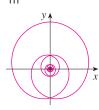
(b)
$$x = t^2 - 2t$$
, $y = \sqrt{t}$

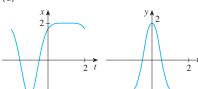

(c)
$$x = \sin 2t$$
, $y = \sin(t + \sin 2t)$

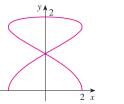
(d)
$$x = \cos 5t$$
, $y = \sin 2t$

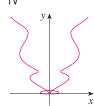

(e)
$$x = t + \sin 4t$$
, $y = t^2 + \cos 3t$

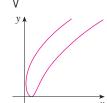
(f)
$$x = \frac{\sin 2t}{4 + t^2}$$
, $y = \frac{\cos 2t}{4 + t^2}$

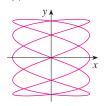



Ш


Ш


(d)




١V

١V

