Review: Integration by Parts (IBP)
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And this work well for problems where we only need to do IBP once. For example,
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We typically see integration by parts as:

As an alternate form, we could write:
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In fact, we can go farther:
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And further still:
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This technique works very well when the derivatives of f are 0 (like for polynomials):
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For this, we take f(z) = 22

sign Diff Int
+ LC2 e3:E

1 2 2 1
_ 2 1.3z :>3.’£72_ 7_7/0.3xd
N 295 ie?m e 395 gw—i— 97 57 e X
- 0 ﬁegx

That last integral is just zero (it’s included so you see the pattern).
Below, we’ll work out a couple more examples, then have some sample problems with solutions.

Worked Examples

1. t?sin(2t) dt

Just as in the last example, we take f(t) = t2 so that the derivative is eventually 0.
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2. /e cos(3t) dt

For this problem, we compute IBP twice in order to get the same integral to appear on both sides of
the equation. Let’s start and see what that means:
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We interpret this to mean:

/e cos(3t) dt = e* (; sin(3t) + 3008(315)) ;l/e cos(3t) dt

Add § [ % cos(3t) dt to both sides, and solve for the integral:
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3. [zn(z)dx
We can’t really use the shortcuts here, since the antiderivatives of In(z) are themselves IBP problems.
In that case, we’ll put f(x) = In(x) instead:
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Practice Problems

1. /ﬁln(w) dx 3. /tge_Qt dt 5. /tan (1/t)d
2. /xzcos(3x)dx 4. /e*Qtsin(Qt) dt 6. /tsm

Solutions to the Practice (online)

1. / JaIn(@) do
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2. /x2 cos(3x) dx
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4. /e_% sin(2t) dt

In the example, we had put the exponential in the middle, but we could have switched that with the
sine, which we’ll do below (either way is correct):
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Therefore,
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so that (add the integral to both sides, divide both sides by 2)
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5. /tan_l(l/t) dt
In the old style, we let u = tan~!(1/t). Differentiate to get du:
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Further, if dv = dt, then v = ¢, and we get:
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