
Review: Integration by Parts (IBP)

We typically see integration by parts as: ∫
u dv = uv −

∫
v du

And this work well for problems where we only need to do IBP once. For example,∫
ln(x) dx ⇒ u = ln(x) dv = dx

du = 1/x dx v = x
⇒ x ln(x)−

∫
x

x
dx = x ln(x)− x + C

As an alternate form, we could write:∫
f(x) g′(x) dx ⇒

sign Diff Int
+ f(x) g′(x)
− f ′(x) g(x)

⇒ f(x)g(x)−
∫

g(x)f ′(x) dx

In fact, we can go farther:

∫
f(x) g′′(x) dx ⇒

sign Diff Int
+ f(x) g′′(x)
− f ′(x) g′(x)
+ f ′′(x) g(x)

⇒ f(x)g′(x)− f ′(x)g(x) +

∫
g(x)f ′′(x) dx

And further still:

∫
f(x) g′′′(x) dx ⇒

sign Diff Int
+ f(x) g′′′(x)
− f ′(x) g′′(x)
+ f ′′(x) g′(x)
− f ′′′(x) g(x)

⇒ f(x)g′′(x)− f ′(x)g′(x) + f ′′(x)g(x)−
∫

g(x)f ′′′(x) dx

This technique works very well when the derivatives of f are 0 (like for polynomials):∫
x2e3x dx

For this, we take f(x) = x2:

sign Diff Int
+ x2 e3x

− 2x 1
3e3x

+ 2 1
9e3x

− 0 1
27e3x

⇒ e3x
(

1

3
x2 − 2

9
x +

2

27

)
− 1

27

∫
0 · e3x dx

That last integral is just zero (it’s included so you see the pattern).
Below, we’ll work out a couple more examples, then have some sample problems with solutions.

Worked Examples

1. t2 sin(2t) dt

Just as in the last example, we take f(t) = t2 so that the derivative is eventually 0.

sign Diff Int
+ t2 sin(2t)
− 2t − 1

2 cos(2t)
+ 2 − 1

4 sin(2t)
− 0 1

8 cos(2t)

⇒ − t2

2
cos(2t) +

t

2
sin(2t) +

1

4
cos(2t) + C

1



2.

∫
e2t cos(3t) dt

For this problem, we compute IBP twice in order to get the same integral to appear on both sides of
the equation. Let’s start and see what that means:

sign Diff Int
+ e2t cos(3t)
− 2e2t 1

3 sin(3t)
+ 4e2t − 1

9 cos(3t)

We interpret this to mean:∫
e2t cos(3t) dt = e2t

(
1

3
sin(3t) +

2

9
cos(3t)

)
− 4

9

∫
e2t cos(3t) dt

Add 4
9

∫
e2t cos(3t) dt to both sides, and solve for the integral:

13

9

∫
e2t cos(3t) dt = e2t

(
1

3
sin(3t) +

2

9
cos(3t)

)
∫

e2t cos(3t) dt = e2t
(

3

13
sin(3t) +

2

13
cos(3t)

)
+ C

3.
∫
x ln(x) dx

We can’t really use the shortcuts here, since the antiderivatives of ln(x) are themselves IBP problems.
In that case, we’ll put f(x) = ln(x) instead:

sign Diff Int
+ ln(x) x
− 1/x 1

2x
2

⇒ 1

2
x2 ln(x)− 1

2

∫
x dx =

1

2
x2 ln(x)− 1

4
x2 + C

Practice Problems

1.

∫ √
x ln(x) dx

2.

∫
x2 cos(3x) dx

3.

∫
t3e−2t dt

4.

∫
e−2t sin(2t) dt

5.

∫
tan−1(1/t) dt

6.

∫
t sin(t) dt

Solutions to the Practice (online)

1.

∫ √
x ln(x) dx

sign Diff Int

+ ln(x) x1/2

− 1/x 2
3x

3/2

⇒ 2

3
x3/2 ln(x)− 2

3

∫
x1/2 dx =

2

3
x3/2 ln(x)− 4

9
x3/2 + C

2.

∫
x2 cos(3x) dx

sign Diff Int
+ x2 cos(3x)
− 2x 1

3 sin(3x)
+ 2 − 1

9 cos(3x)
− 0 − 1

27 sin(3x)

⇒ 1

3
x2 sin(3x) +

2x

9
cos(3x)− 2

27
sin(3x) + C

2



3.

∫
t3e−2t dt

sign Diff Int
+ t3 e−2t

− 3t2 − 1
2e−2t

+ 6t 1
4e−2t

− 6 − 1
8e−2t

+ 0 1
16e−2t

⇒ e−2t
(
−1

2
t2 − 3

4
t2 − 3

4
t− 3

8

)
+ C

4.

∫
e−2t sin(2t) dt

In the example, we had put the exponential in the middle, but we could have switched that with the
sine, which we’ll do below (either way is correct):

sign Diff Int
+ sin(2t) e−2t

− 2 cos(2t) − 1
2e−2t

+ −4 sin(2t) 1
4e−2t

Therefore, ∫
e−2t sin(2t) dt = e−2t

(
−1

2
sin(2t)− 1

2
cos(2t)

)
−
∫

e−2t sin(2t) dt

so that (add the integral to both sides, divide both sides by 2)∫
e−2t sin(2t) dt = −1

4
e−2t (sin(2t) + cos(2t)) + C

5.

∫
tan−1(1/t) dt

In the old style, we let u = tan−1(1/t). Differentiate to get du:

du =
1

1 + (1/t)2
· −1

t2
=
−1

1 + t2

Further, if dv = dt, then v = t, and we get:

t arctan(1/t)−
∫
−t

1 + t2
dt = t arctan(t) +

1

2
ln(t2 + 1) + C

6.

∫
t sin(t) dt

+ t sin(t)
− 1 − cos(t)
+ 0 − sin(t)

⇒ −t cos(t) + sin(t) + C

3


